Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 193: 71-83, 2018 10.
Article in English | MEDLINE | ID: mdl-29957329

ABSTRACT

In microelectronics, recently developed 3D integration offers the possibility to stack the dice or wafers vertically instead of putting their different parts next to one another, in order to save space. As this method becomes of greater interest, the need for 3D imaging techniques becomes higher. We here report a study about different 3D characterization techniques applied to copper pillars, which are used to stack different dice together. Destructive techniques such as FIB/SEM, FIB/FIB, and PFIB/PFIB slice and view protocols have been assessed, as well as non-destructive ones, such as laboratory-based and synchrotron-based computed tomographies. A comparison of those techniques in the specific case of copper pillars is given, taking into account the constraints linked to the microelectronics industry, mainly concerning resolution and sample throughput. Laboratory-based imaging techniques are shown to be relevant in the case of punctual analyses, while synchrotron based tomographies offer highly resolved volumes for larger batches of samples.

2.
Phys Chem Chem Phys ; 20(3): 1984-1992, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29299549

ABSTRACT

The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

3.
J Phys Chem A ; 117(31): 6781-8, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23829587

ABSTRACT

4-Hydroxycyanobenzene (4HCB) single crystals (SCs) and polycrystals (PCs) have been analyzed by means of both unpolarized and linearly polarized (LP) infrared (IR) beams. Most of the signals found at room temperature (298 K) were assigned to well-defined vibrational modes. Using an LP-IR beam and keeping the beam polarization aligned with either the a or the b crystal axis, anisotropic spectra of SCs were also attributed. The differences between the LP and unpolarized spectra of SCs are discussed in view of spatially anisotropic vibronic couplings between the benzenic π electrons and the molecular functional groups (FGs), with reference to the overall lattice arrangement and the polarizability of the FGs. In addition, signals suggesting the low-concentration presence of tautomers within the crystal were detected. LP-IR measurements of SCs in the temperature range between 298 and 120 K are also reported and discussed, with particular reference to the hydrogen-bonding-related functional groups of 4HCB, allowing the assignment of OH bending signals that were otherwise not clearly attributable and the inference of an anisotropic shrinking of the crystals. Overall, the presented results show that LP-IR spectroscopy is a valuable tool for noncontact, nondestructive characterization of organic semiconducting single crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...