Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 94, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169471

ABSTRACT

The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.

2.
Soft Matter ; 19(33): 6234-6246, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37555622

ABSTRACT

We investigate the interplay between chirality and confinement induced by the presence of an external potential. For potentials having radial symmetry, the circular character of the trajectories induced by the chiral motion reduces the spatial fluctuations of the particle, thus providing an extra effective confining mechanism, that can be interpreted as a lowering of the effective temperature. In the case of non-radial potentials, for instance, with an elliptic shape, chirality displays a richer scenario. Indeed, the chirality can break the parity symmetry of the potential that is always fulfilled in the non-chiral system. The probability distribution displays a strong non-Maxwell-Boltzmann shape that emerges in cross-correlations between the two Cartesian components of the position, that vanishes in the absence of chirality or when radial symmetry of the potential is restored. These results are obtained by considering two popular models in active matter, i.e. chiral Active Brownian particles and chiral active Ornstein-Uhlenbeck particles.

3.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37486049

ABSTRACT

The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular, stochastic thermodynamics. We call them "entropons" because they are the modes of spectral entropy production (at a given frequency and wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular active matter, as well as in living systems, such as dense cell monolayers.

4.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37059111

ABSTRACT

Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.

5.
Lab Chip ; 23(4): 773-784, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36723114

ABSTRACT

Sperm motility is a prerequisite for male fertility. Enhancing the concentration of motile sperms in assisted reproductive technologies - for human and animal reproduction - is typically achieved through aggressive methods such as centrifugation. Here, we propose a passive technique for the amplification of motile sperm concentration, with no externally imposed forces or flows. The technique is based on the disparity between probability rates, for motile cells, of entering and escaping from complex structures. The effectiveness of the technique is demonstrated in microfluidic experiments with microstructured devices, comparing the trapping power in different geometries. In these micro-traps, we observe an enhancement of cells' concentration close to 10, with a contrast between motile and non-motile cells increased by a similar factor. Simulations of suitable interacting model sperms in realistic geometries reproduce quantitatively the experimental results, extend the range of observations and highlight the components that are key to the optimal trap design.


Subject(s)
Microfluidics , Sperm Motility , Animals , Male , Humans , Semen , Spermatozoa , Centrifugation, Density Gradient
6.
Phys Chem Chem Phys ; 24(40): 24910-24916, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36200385

ABSTRACT

We investigate the effect of rotational inertia on the collective phenomena of underdamped active systems and show that the increase of the moment of inertia of each particle favors non-equilibrium phase coexistence, known as motility induced phase separation, and counteracts its suppression due to translational inertia. Our conclusion is supported by a non-equilibrium phase diagram (in the plane spanned by rotational inertial time and translational inertial time) whose transition line is understood theoretically through scaling arguments. In addition, rotational inertia increases the correlation length of the spatial velocity correlations in the dense cluster. The fact that rotational inertia enhances collective phenomena, such as motility induced phase separation and spatial velocity correlations, is strongly linked to the increase of rotational persistence. Moreover, large moments of inertia induce non-monotonic temporal (cross) correlations between translational and rotational degrees of freedom truly absent in non-equilibrium systems.

7.
J Chem Phys ; 156(7): 071102, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35183083

ABSTRACT

We propose a new overarching model for self-propelled particles that flexibly generates a full family of "descendants." The general dynamics introduced in this paper, which we denote as the "parental" active model (PAM), unifies two special cases commonly used to describe active matter, namely, active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs). We thereby document the existence of a deep and close stochastic relationship between them, resulting in the subtle balance between fluctuations in the magnitude and direction of the self-propulsion velocity. Besides illustrating the relation between these two common models, the PAM can generate additional offsprings, interpolating between ABP and AOUP dynamics, that could provide more suitable models for a large class of living and inanimate active matter systems, possessing characteristic distributions of their self-propulsion velocity. Our general model is evaluated in the presence of a harmonic external confinement. For this reference example, we present a two-state phase diagram that sheds light on the transition in the shape of the positional density distribution from a unimodal Gaussian for AOUPs to a Mexican-hat-like profile for ABPs.

8.
Soft Matter ; 18(7): 1412-1422, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35080576

ABSTRACT

We study the dynamical properties of an active particle subject to a swimming speed explicitly depending on the particle position. The oscillating spatial profile of the swim velocity considered in this paper takes inspiration from experimental studies based on Janus particles whose speed can be modulated by an external source of light. We suggest and apply an appropriate model of an active Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary properties, by finding the exact solution of the steady-state probability distribution of particle position and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the one found in the framework of other popular models. The reduced velocity distribution highlights the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state combining numerical and analytical methods derived under suitable approximations. We observe a non-monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the ratio between the persistence length and the spatial period of the swim velocity. In addition, we numerically and analytically study the mean square displacement and the long-time diffusion coefficient. The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim velocity oscillations increases because the diffusion is mainly determined by those regions where the particles are slow.

9.
J Chem Phys ; 155(23): 234902, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34937362

ABSTRACT

We study the dynamics of one-dimensional active particles confined in a double-well potential, focusing on the escape properties of the system, such as the mean escape time from a well. We first consider a single-particle both in near and far-from-equilibrium regimes by varying the persistence time of the active force and the swim velocity. A non-monotonic behavior of the mean escape time is observed with the persistence time of the activity, revealing the existence of an optimal choice of the parameters favoring the escape process. For small persistence times, a Kramers-like formula with an effective potential obtained within the unified colored noise approximation is shown to hold. Instead, for large persistence times, we developed a simple theoretical argument based on the first passage theory, which explains the linear dependence of the escape time with the persistence of the active force. In the second part of the work, we consider the escape on two active particles mutually repelling. Interestingly, the subtle interplay of active and repulsive forces may lead to a correlation between particles, favoring the simultaneous jump across the barrier. This mechanism cannot be observed in the escape process of two passive particles. Finally, we find that in the small persistence regime, the repulsion favors the escape, such as in passive systems, in agreement with our theoretical predictions, while for large persistence times, the repulsive and active forces produce an effective attraction, which hinders the barrier crossing.

10.
Phys Rev E ; 104(2-1): 024140, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525579

ABSTRACT

We investigate the effect of coarse graining on the thermodynamic properties of a system, focusing on entropy production. As a case of study, we consider a one-dimensional colloidal particle in contact with a thermal bath, moving in a sinusoidal potential and driven out of equilibrium by a small constant force. Different levels of coarse graining are evaluated: At first, we compare the results in the underdamped dynamics with those in the overdamped one (first coarse graining). For large values of the friction coefficient, the two dynamics have the same thermodynamics properties, while, for smaller friction values, the overdamped approximation produces an excess of entropy production with respect to that of the underdamped dynamics. Moreover, for further smaller values of the drag coefficient, the excess of entropy production turns into a loss. These regimes are explained by evaluating the jump statistics, observing that the inertia is able to induce multiple jumps and affect the average jump rate. The periodic shape of the potential allows us to approximate the continuous dynamics via a Markov chain after the introduction of a suitable time and space discretization (second level of coarse graining). This discretization procedure is implemented starting both from the underdamped and the overdamped evolution and is analyzed for different values of the friction coefficient.

11.
J Chem Phys ; 154(24): 244901, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34241356

ABSTRACT

We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite the absence of explicit interactions among the velocities or the active forces of different particles, the system displays a transition from a disordered and stuck state to an ordered state of global collective motion where the particles rotate persistently clockwise or anticlockwise. We describe this behavior by introducing a suitable order parameter, the velocity polarization, measuring the global alignment of the particles' velocities along the tangential direction of the ring. We also measure the spatial velocity correlation function and its correlation length to characterize the two states. In the rotating phase, the velocity correlation displays an algebraic decay that is analytically predicted together with its correlation length, while in the stuck regime, the velocity correlation decays exponentially with a correlation length that increases with the persistence time. In the first case, the correlation (and, in particular, its correlation length) does not depend on the active force but the system size only. The global collective motion, an effect caused by the interplay between finite-size, periodicity, and persistent active forces, disappears as the size of the ring becomes infinite, suggesting that this phenomenon does not correspond to a phase transition in the usual thermodynamic sense.

12.
Soft Matter ; 17(15): 4109-4121, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33734261

ABSTRACT

Recently, it has been discovered that systems of active Brownian particles (APB) at high density organise their velocities into coherent domains showing large spatial structures in the velocity field. This collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle force favoring the alignment of the velocities. This phenomenon was investigated in the absence of thermal noise and in the overdamped regime where inertial forces could be neglected. In this work, we demonstrate through numerical simulations and theoretical analysis that velocity alignment is a robust property of ABP and persists even in the presence of inertial forces and thermal fluctuations. We also show that a single dimensionless parameter, such as the Péclet number customarily employed in the description of self-propelled particles, is not sufficient to fully characterize this phenomenon either in the regimes of large viscosity or small mass. Indeed, the size of the velocity domains, measured through the correlation length of the spatial velocity correlation, remains constant when the swim velocity increases and decreases as the rotational diffusion becomes larger. We find that, contrary to the common belief, the spatial velocity correlation not only depends on inertia but is also non-symmetrically affected by mass and inverse viscosity variations. We conclude that in self-propelled systems, at variance with passive systems, variations in the inertial time (mass over solvent viscosity) and mass act as independent control parameters. Finally, we highlight the non-thermal nature of the spatial velocity correlations that are fairly insensitive both to solvent and active temperatures.

13.
J Chem Phys ; 154(2): 024902, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33445896

ABSTRACT

We study how inertia affects the behavior of self-propelled particles moving through a viscous solvent by employing the underdamped version of the active Ornstein-Uhlenbeck model. We consider both potential-free and harmonically confined underdamped active particles and investigate how the single-particle trajectories change as the drag coefficient is varied. In both cases, we obtain the matrix of correlations between the position, velocity, and self-propulsion and the explicit form of the steady-state probability distribution function. Our results reveal the existence of marked equal-time correlations between velocity and active force in the non-equilibrium steady state. Inertia also affects the time-dependent properties of the active particles and leads to non-monotonic decay of the two-time correlation functions of particle positions and velocities. We also study how the virial pressure of particles confined to harmonic traps changes as one goes from the overdamped to the underdamped regime. Finally, the study of the correlations in the underdamped regime is extended to the case of a chain of active particles interacting via harmonic springs.

14.
J Chem Phys ; 153(18): 184901, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33187418

ABSTRACT

We consider the solid or hexatic non-equilibrium phases of an interacting two-dimensional system of active Brownian particles at high density and investigate numerically and theoretically the properties of the velocity distribution function and the associated kinetic temperature. We obtain approximate analytical predictions for the shape of the velocity distribution and find a transition from a Mexican-hat-like to a Gaussian-like distribution as the persistence time of the active force changes from the small to the large persistence regime. Through a detailed numerical and theoretical analysis of the single-particle velocity variance, we report an exact analytical expression for the kinetic temperature of dense spherical self-propelled particles that holds also in the non-equilibrium regimes with large persistence times and discuss its range of validity.

15.
Soft Matter ; 16(23): 5431-5438, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32469036

ABSTRACT

We study the dynamics of a self-propelled particle advected by a steady laminar flow. The persistent motion of the self-propelled particle is described by an active Ornstein-Uhlenbeck process. We focus on the diffusivity properties of the particle as a function of persistence time and free-diffusion coefficient, revealing non-monotonic behaviors, with the occurrence of a minimum and a steep growth in the regime of large persistence time. In the latter limit, we obtain an analytical prediction for the scaling of the diffusion coefficient with the parameters of the active force. Our study sheds light on the effect of a flow-field on the diffusion of active particles, such as living microorganisms and motile phytoplankton in fluids.


Subject(s)
Models, Theoretical , Computer Simulation , Diffusion , Motion
16.
Soft Matter ; 16(10): 2594-2604, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32091062

ABSTRACT

We study the dynamics of a polymer, described as a variant of a Rouse chain, driven by an active terminal monomer (head). The local active force induces a transition from a globule-like to an elongated state, as revealed by the study of the end-to-end distance, the variance of which is analytically predicted under suitable approximations. The change in the relaxation times of the Rouse-modes produced by the local self-propulsion is consistent with the transition from globule to elongated conformations. Moreover, also the bond-bond spatial correlation for the chain head are affected by the self-propulsion and a gradient of over-stretched bonds along the chain is observed. We compare our numerical results both with the phenomenological stiff-polymer theory and several analytical predictions in the Rouse-chain approximation.

17.
Sci Rep ; 9(1): 16687, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31723160

ABSTRACT

We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.

18.
J Chem Phys ; 150(14): 144903, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-30981222

ABSTRACT

The transport of independent active Brownian particles within a two-dimensional narrow channel, modeled as an open-wedge, is studied both numerically and theoretically. We show that the active force tends to localize the particles near the walls, thus reducing the effect of the entropic force which, instead, is prevailing in the case of passive particles. As a consequence, the exit of active particles from the smaller side of the channel is facilitated with respect to their passive counterpart. By continuously re-injecting particles in the middle of the wedge, we obtain a steady regime whose properties are investigated in the presence and absence of an external constant driving field. We characterize the statistics and properties of the exit process from the two opposite sides of the channel, also by making a comparison between the active case and passive case. Our study reveals the existence of an optimal value of the persistence time of the active force which is able to guarantee the maximal efficiency in the transport process.

19.
Sci Rep ; 9(1): 1386, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718579

ABSTRACT

We study a system of interacting active particles, propelled by colored noises, characterized by an activity time τ, and confined by a single-well anharmonic potential. We assume pair-wise repulsive forces among particles, modelling the steric interactions among microswimmers. This system has been experimentally studied in the case of a dilute suspension of Janus particles confined through acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are negligible - increasing the persistent time, τ, pushes the particles away from the potential minimum, until a saturation distance is reached. We compute the phase diagram (activity versus interaction length), showing that the interaction does not suppress this delocalization phenomenon but induces a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior is observed: a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher values, when the delocalization occurs, a further increase of τ induces freezing inside the densest regions. An approximate analytical scheme gives fair predictions for the density profiles in the weakly interacting case. The analysis of non-equilibrium heat fluxes reveals that in the region of largest particle concentration equilibrium is restored in several aspects.

20.
Soft Matter ; 15(12): 2627-2637, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30810571

ABSTRACT

In this work, we study the stationary behavior of an assembly of independent chiral active particles under confinement by employing an extension of the active Ornstein-Uhlenbeck model. The chirality modeled by means of an effective torque term leads to a drastic reduction in the accumulation near the walls with respect to the case without handedness and to the appearance of currents parallel to the container walls accompanied by a large accumulation of particles in the inner region. In the case of two-dimensional chiral particles confined by harmonic walls, we determine the analytic form of the distribution of positions and velocities in two different situations: a rotationally invariant confining potential and an infinite channel with parabolic walls. Both these models display currents and chirality induced inner accumulation. These phenomena are further investigated by means of a more realistic description of a channel, where the wall and bulk regions are clearly separated. The corresponding current and density profiles are obtained by numerical simulations. At variance with the harmonic models, the third model shows a progressive emptying of the wall regions and the simultaneous enhancement of the bulk population. We explain such a phenomenon in terms of the combined effect of wall repulsive forces and chiral motion and provide a semiquantitative description of the current profile in terms of effective viscosity of the chiral gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...