Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 28(16): 2159-2169, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28615318

ABSTRACT

It has long been postulated, although never directly demonstrated, that mitochondria are strategically positioned in the cytoplasm to meet local requirements for energy production. Here we show that positioning of mitochondria in mouse embryonic fibroblasts (MEFs) determines the shape of intracellular energy gradients in living cells. Specifically, the ratio of ATP to ADP was highest at perinuclear areas of dense mitochondria and gradually decreased as more-peripheral sites were approached. Furthermore, the majority of mitochondria were positioned at the ventral surface of the cell, correlating with high ATP:ADP ratios close to the ventral membrane, which rapidly decreased toward the dorsal surface. We used cells deficient for the mitochondrial Rho-GTPase 1 (Miro1), an essential mediator of microtubule-based mitochondrial motility, to study how changes in mitochondrial positioning affect cytoplasmic energy distribution and cell migration, an energy-expensive process. The mitochondrial network in Miro1-/- MEFs was restricted to the perinuclear area, with few mitochondria present at the cell periphery. This change in mitochondrial distribution dramatically reduced the ratio of ATP to ADP at the cell cortex and disrupted events essential for cell movement, including actin dynamics, lamellipodia protrusion, and membrane ruffling. Cell adhesion status was also affected by changes in mitochondrial positioning; focal adhesion assembly and stability was decreased in Miro1-/- MEFs compared with Miro1+/+  MEFs. Consequently Miro1-/- MEFs migrated slower than control cells during both collective and single-cell migration. These data establish that Miro1-mediated mitochondrial positioning at the leading edge provides localized energy production that promotes cell migration by supporting membrane protrusion and focal adhesion stability.


Subject(s)
rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/physiology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Adhesion , Cell Movement/physiology , Cells, Cultured , Cytoplasm/metabolism , Energy Metabolism , Mice , Microscopy, Fluorescence/methods , Microtubules/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...