Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 6: e1890, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26379195

ABSTRACT

Ceramide regulates several different cellular responses including mechanisms leading to apoptosis. Serum- and glucocorticoid-inducible protein kinase (SGK)-1 is a serine threonine kinase, which activates survival pathways in response to stress stimuli. Recently, we demonstrated an anti-apoptotic role of SGK-1 in human umbilical endothelial cells treated with high glucose. In the present study, since ceramide induces apoptosis by multiple mechanisms in diabetes and its complication such as nephropathy, we aimed to investigate whether SGK-1 may protect even against apoptosis induced by ceramide in kidney cells. Human embryonic kidney (HEK)-293 cells stable transfected with SGK-1 wild type (SGK-1wt) and its dominant negative gene (SGK-1dn) have been used in this study. Apoptotic stimuli were induced by C2-ceramide and TNF-α to increase endogenous synthesis of ceramide. Upon activation with these stimuli, SGK-1wt transfected cells have a statistically significant reduction of apoptosis compared with SGK-1dn cells (P<0.001). This protection was dependent on activation of caspase-3 and Poly-ADP-ribose-polymerase-1 (PARP-1) cleavage. SGK-1 and AKT-1 two highly homologous kinases differently reacted to ceramide treatment, since SGK-1 increases in response to apoptotic stimulus while AKT-1 decreases. This enhancement of SGK-1 was dependent on p38-mitogen-activated-protein kinases (p38MAPK), cyclic-adenosine-monophosphate/protein kinase A (cAMP/PKA) and phosphoinositide-3-kinase (PI3K) pathways. Especially, by using selective LY294002 inhibitor, we demonstrated that the most involved pathway in the SGK-1 mediated process of protection was PI3K. Treatment with inhibitor of SGK-1 (GSK650394) significantly enhanced TNF-α-dependent apoptosis in HEK-293 cells overexpressing SGK-1wt. Caspase-3, -8 and -9 selective inhibitors confirmed that SGK-1 reduced the activation of caspase-dependent apoptosis, probably by both intrinsic and extrinsic pathways. In conclusion, we demonstrated that in kidney cells, overexpression of SGK-1 is protective against ceramide-induced apoptosis and the role of SGK-1 can be potentially explored as a therapeutic target in conditions like diabetes, where ceramide levels are increased.


Subject(s)
Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Kidney/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis , Ceramides , HEK293 Cells , Humans , Kidney/cytology , Transfection
2.
Curr Med Chem ; 22(33): 3765-88, 2015.
Article in English | MEDLINE | ID: mdl-26264924

ABSTRACT

Senescence is a phenomenon characterized by a progressive decline of body homeostasis. Premature senescence acts when the cellular system is not able to adequately respond to noxious stimuli by synthesis of stressor molecules. Among those, serum-and-glucocorticoidinducible kinase-1 (SGK-1) dramatically increases under typical physiopathological conditions, such as glucocorticoid or mineralcorticoids exposure, inflammation, hyperglycemia, and ischemia. SGK-1 has been implicated in mechanism regulating oxidative stress, apoptosis, and DNA damage, which are all leading to a state of accelerating aging. Moreover, SGK-1-sensitive ion channels participate in the regulation of renal Na(+)/K(+) regulation, blood pressure, gastric acid secretion, cardiac action potential, and neuroexcitability. Recently, we demonstrated in endothelial cells as an increase in SGK-1 activity and expression reduces oxidative stress, improves cell survival and restores insulin-mediated nitric oxide production after hyperglycemia. Moreover, we showed as SGK-1 delays the onset of senescence by increasing telomerase activity, significantly decreasing reactive oxygen species (ROS) production, and by directly interacting with hTERT. Therefore, SGK-1 may represent a specific target to further develop novel therapeutic options against chronic diseases such as diabetes typical of aging. SGK-1 has been also associated with cancer, neurodegenerative diseases, and cardiovascular disease, among other age-related diseases. However, to date, the data available on SGK-1 and aging, are sparse, controversial, and only from C. elegans experimental models. In this review we sought to discuss the possible implication of SGK-1 in mechanisms regulating senescence and age-related diseases. Moreover, we aimed to discuss and identify the possible role of SGK-1 as possible molecular target to counteract and prevent aging.


Subject(s)
Aging , Cardiovascular Diseases/enzymology , Immediate-Early Proteins/metabolism , Molecular Targeted Therapy , Neoplasms/enzymology , Neurocognitive Disorders/enzymology , Protein Serine-Threonine Kinases/metabolism , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...