Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(2): e2100096, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34676924

ABSTRACT

Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.


Subject(s)
Organoids , Prostatic Neoplasms, Castration-Resistant , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Animals , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein , Extracellular Matrix/metabolism , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Male , Mice , Organoids/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/therapeutic use
2.
ACS Biomater Sci Eng ; 5(7): 3184-3189, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-33304999

ABSTRACT

We present an electrodeposition technique for fabricating tubular alginate structures. In this technique, two electrodes (anode and cathode) are suspended in a solution of alginate and insoluble calcium carbonate particles, and the application of an electrical potential produces a localized pH change at the anode surface causing suspended divalent cations to become soluble and cross-link the alginate. We robustly characterize how the fabrication parameters influence the rate of radial deposition on the anode, including deposition time, applied voltage, alginate concentration, type of divalent cation and concentration, and anode diameter. Furthermore, we produce gels with a range of tailorable features, including mechanical properties, dimensions (thick-ness and lumen size), customizable tubular geometries, and radial compositional heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL
...