Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7829, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837262

ABSTRACT

Optomechanical crystal cavities (OMC) have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of OMCs operating under ambient conditions as a sensor of submicrometer particles by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region. OMCs have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, viruses and bacteria.

2.
Phys Rev Lett ; 125(14): 147201, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064528

ABSTRACT

The resonant enhancement of mechanical and optical interaction in optomechanical cavities enables their use as extremely sensitive displacement and force detectors. In this Letter, we demonstrate a hybrid magnetometer that exploits the coupling between the resonant excitation of spin waves in a ferromagnetic insulator and the resonant excitation of the breathing mechanical modes of a glass microsphere deposited on top. The interaction is mediated by magnetostriction in the ferromagnetic material and the consequent mechanical driving of the microsphere. The magnetometer response thus relies on the spectral overlap between the ferromagnetic resonance and the mechanical modes of the sphere, leading to a peak sensitivity of 850 pT Hz^{-1/2} at 206 MHz when the overlap is maximized. By externally tuning the ferromagnetic resonance frequency with a static magnetic field, we demonstrate sensitivity values at resonance around a few nT Hz^{-1/2} up to the gigahertz range. Our results show that our hybrid system can be used to build a high-speed sensor of oscillating magnetic fields.

3.
Phys Rev Lett ; 123(1): 017402, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31386408

ABSTRACT

The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in antiphase, which is in agreement with the predictions of our numerical model that considers reactive coupling. We also show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and pave the way towards realizing integrated networks of synchronized mechanical oscillators.

4.
Opt Express ; 26(8): 9829-9839, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715929

ABSTRACT

Silicon on insulator photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, there are some constraints such as the high cost of the wafers and limitation to a single physical device level. In the present work we investigate nanocrystalline silicon as an alternative material for optomechanical devices. In particular, we demonstrate that optomechanical crystal cavities fabricated of nanocrystalline silicon have optical and mechanical properties enabling non-linear dynamical behaviour and effects such as thermo-optic/free-carrier-dispersion self-pulsing, phonon lasing and chaos, all at low input laser power and with typical frequencies as high as 0.3 GHz.

5.
Sci Rep ; 5: 15733, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503448

ABSTRACT

We report a novel injection scheme that allows for "phonon lasing" in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10(-2). It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications.

6.
Sci Rep ; 5: 14452, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26396043

ABSTRACT

This work reports the dynamical thermal behavior of lasing microspheres placed on a dielectric substrate while they are homogeneously heated-up by the top-pump laser used to excite the active medium. The lasing modes are collected in the far-field and their temporal spectral traces show characteristic lifetimes of about 2 ms. The latter values scale with the microsphere radius and are independent of the pump power in the studied range. Finite-Element Method simulations reproduce the experimental results, revealing that thermal dynamics is dominated by heat dissipated towards the substrate through the medium surrounding the contact point. The characteristic system scale regarding thermal transport is of few hundreds of nanometers, thus enabling an effective toy model for investigating heat conduction in non-continuum gaseous media and near-field radiative energy transfer.

7.
Opt Lett ; 36(5): 615-7, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368925

ABSTRACT

Whispering-gallery modes (WGMs) on Nd3+-doped glass microspheres with a radius of ∼15 µm were measured in a modified confocal microscope, where a dual spatial resolution in both excitation and detection zones was possible. As an alternative to the standard excitation mechanism by an evanescent wave, we used an efficient pumping/detecting scheme, focusing a laser in the microsphere and exciting the Nd3+ ions, whose fluorescent emission produces the WGMs. We have also measured the generated WGMs by changing the detection zone, where higher amplitude resonances were found when exciting in the center and detecting at the edge of the microsphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...