Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543383

ABSTRACT

The use of Type IV cylinders for gas storage is becoming more widespread in various sectors, especially in transportation, owing to the lightweight nature of this type of cylinder, which is composed of a polymeric liner that exerts a barrier effect and an outer composite material shell that primarily imparts mechanical strength. In this work, the failure analysis of an HDPE liner in a Type IV cylinder for high-pressure storage was carried out. The breakdown occurred during a cyclic pressure test at room temperature and manifested in the hemispherical head area, as cracks perpendicular to the liner pinch-off line. The failed sample was thoroughly investigated and its characteristics were compared with those of other liners at different stages of production of a Type IV cylinder (blow molding, curing of the composite material). An examination of the liner showed that no significant chemical and morphological changes occurred during the production cycle of a Type IV cylinder that could justify the liner rupture, and that the most likely cause of failure was a design-related fatigue phenomenon.

2.
Materials (Basel) ; 13(4)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098426

ABSTRACT

In this work, the possibility of creating a polymer-based adaptive scaffold for improving the hydrogen storage properties of the system 2LiH+MgB2+7.5(3TiCl3·AlCl3) was studied. Because of its chemical stability toward the hydrogen storage material, poly(4-methyl-1-pentene) or in-short TPXTM was chosen as the candidate for the scaffolding structure. The composite system was obtained after ball milling of 2LiH+MgB2+7.5(3TiCl3·AlCl3) and a solution of TPXTM in cyclohexane. The investigations carried out over the span of ten hydrogenation/de-hydrogenation cycles indicate that the material containing TPXTM possesses a higher degree of hydrogen storage stability.

3.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29512391

ABSTRACT

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

4.
Mater Sci Eng C Mater Biol Appl ; 59: 585-593, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652411

ABSTRACT

Mesoporous silica particles prepared through a simplified Stöber method and low temperature solvent promoted surfactant removal are evaluated as dissolution enhancers for poorly soluble compounds, using a powerful anticancer agent belonging to pyrroloquinolinones as a model for anticancer oral therapy, and anti-inflammatory ibuprofen as a reference compound. Mesoporous powders composed of either pure silica or silica modified with aminopropyl residues are produced. The influence of material composition and drug chemical properties on drug loading capability and dissolution enhancement are studied. The two types of particles display similar size, surface area, porosity, erodibility, drug loading capability and stability. An up to 50% w/w drug loading is reached, showing correlation between drug concentration in adsorption medium and content in the final powder. Upon immersion in simulating body fluids, immediate drug dissolution occurred, allowing acceptor solutions to reach concentrations equal to or greater than drug saturation limits. The matrix composition influenced drug solution maximal concentration, complementing the dissolution enhancement generated by a mesoporous structure. This effect was found to depend on both matrix and drug chemical properties allowing us to hypothesise general prediction behaviour rules.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Microspheres , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Drug Stability , Phase Transition
5.
Nanotechnology ; 23(38): 385401, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22948563

ABSTRACT

Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.


Subject(s)
Borohydrides/chemistry , Calcium Compounds/chemistry , Carbon/chemistry , Hydrogen/chemistry , Hydrogen/isolation & purification , Nanostructures/chemistry , Nanostructures/ultrastructure , Absorption , Materials Testing , Porosity
6.
Nanotechnology ; 21(6): 065707, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20057019

ABSTRACT

The dehydrogenation kinetics of LiBH(4) dispersed on multi-walled carbon nanotubes (MWCNTs) by the solvent infiltration technique has been studied. Commercial MWCNTs were ball-milled for different milling times in order to increase the specific surface area (SSA) as measured by the BET technique. Thermal programmed desorption measurements have been performed using a Sievert's apparatus on samples with different SSA of MWCNTs and different LiBH(4) to MWCNT ratio. Pressure composition isotherms (PCI) have been obtained at different temperatures in order to estimate the DeltaH and DeltaS of dehydrogenation. It has been observed that the dispersion of LiBH(4) on MWCNTs leads to a lower dehydrogenation temperature compared to pure LiBH(4). Moreover, the dehydrogenation temperature further decreases with increasing MWCNT surface area. An interpretation of the kinetic effect is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...