Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083268

ABSTRACT

This work presents the design, manufacture, test, and preliminary in-vivo assessment of the proof-of-concept of a miniaturized wireless platform for acquiring electroencephalography signals, where the input stage is a high-CMRR current-efficiency custom-made integrated neural preamplifier.Clinical relevance- Small, low-power consumption, wireless, wearable devices for chronically monitoring EEG recordings may contribute to the diagnosis of transient neurological events, the characterization and potential forecasting of epileptic seizures, and provide signals for controlling prosthetic and aid devices.


Subject(s)
Epilepsy , Wearable Electronic Devices , Humans , Equipment Design , Electroencephalography , Epilepsy/diagnosis , Amplifiers, Electronic
2.
J Exp Biol ; 226(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-38009325

ABSTRACT

The electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms. Secondly, the Review discusses the threefold function of the fish-centered electric fields: (1) to generate electric signals that encode the material, geometry and distance of nearby objects, serving as a short-range sensory modality or 'electric touch'; (2) to mark emitter identity and location; and (3) to convey social messages encoded in stereotypical modulations of the electric field that might be considered as species-specific communication symbols. Finally, this Review considers a range of potential research directions that are likely to be productive in the future.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Touch , Electric Organ
3.
J Exp Biol ; 226(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37408509

ABSTRACT

Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global 'light-avoidance response'. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day and light spots due to the sun's relative movement alert the fish to hide in shady zones to avoid macroptic predators and facilitate tracking the movement of floating plant islands by wind and/or water currents.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Electric Organ/physiology , Gymnotiformes/physiology , Movement , Electric Fish/physiology
4.
Biosystems ; 223: 104800, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343760

ABSTRACT

This article introduces and tests a simple model that describes a neural network found in nature, the electrosensory control of an electromotor pacemaker. The cornerstone of the model is an early-stage filter based on the subtraction of a feedforward integrated version of the recent sensory past from the present input signal. The output of this filter governs the modulation of a premotor pacemaker command driving the sensory signal carrier generation and, in consequence, the timing of subsequent electrosensory input. This early filter has a biological parallel in the known connectivity of the first electrosensory relay within the brain stem of the weakly electric fish Gymnotus omarorum. Our biomimetic model of this active, perception-driven action-sensation cycle was contrasted with previously published and here provided new data. When the amplitude of the electrosensory input was manipulated to mimic previous experiments on the novelty detection characteristics, the model reproduces them rather faithfully. In addition, when we applied continuous variations to the input it shows that increases in stimulus amplitudes are followed by increases in the EOD rate, but decreases do not cause rate modulation suggesting a rectification in some stage of the loop. These behavioral experiments confirmed results generated the simulations suggesting that beyond explaining the novelty detection process this simple model is a good description of the electrosensory -electromotor loop in pulse weakly electric fish.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Electric Organ , Sensation
5.
Biosystems ; 223: 104803, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371021

ABSTRACT

The pulse emitting weakly electric fish Gymnotus omarorum shows stereotyped "novelty responses" consisting of a transient acceleration of the rhythm of a self-emitted electric organ discharge that carries electrosensory signals. Here we show that rapid increases in electric image amplitude cause a "novelty detection potential" in the first electrosensory relay. This sign precedes and its amplitude predicts, the amplitude of the subsequent behavioral novelty response. Current source density analyses indicates its origin ar the layers of the electrosensory lobe where the main output neurons occur. Two types of units, referred to as "ON" and "OFF". Were recorded there in decerebrated fish. Firing probability of "OFF" units drastically decreased after a stepwise increase in electric image. By contrast, the very first novel stimuli after the increase evoked a sharp peak in firing rate of "ON" units followed by a very fast adaptation phase that contrasted with the slow adaptation observed in previous recordings of primary afferents. The amplitudes of this peak, the novelty detection potential, and the behavioral novelty responses, show the same dependence on the departure of the newest stimulus intensity from the weighted average of preceding ones suggesting that the signals encoded by "ON" neurons underlay the novelty detection potential, propagates through the hierarchical organization of the electromotor control, and finally contribute to accelerate the electric organ discharge rate. This suggests that detecting novelty at the very early processing stage of electrosensory signals is essential to adapt the electrosensory sampling rate to exploration requirements as they change dynamically.


Subject(s)
Electric Fish , Animals , Electric Fish/physiology , Electric Organ/physiology , Neurons
6.
J Exp Biol ; 224(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34318315

ABSTRACT

Some fish communicate using pulsatile, stereotyped electric organ discharges (EODs) that exhibit species- and sex-specific time courses. To ensure reproductive success, they must be able to discriminate conspecifics from sympatric species in the muddy waters they inhabit. We have previously shown that fish in both Gymnotus and Brachyhypopomus genera use the electric field lines as a tracking guide to approach conspecifics (electrotaxis). Here, we show that the social species Brachyhypopomus gauderio uses electrotaxis to arrive abreast a conspecific, coming from behind. Stimulus image analysis shows that, even in a uniform field, every single EOD causes an image in which the gradient and the local field time courses contain enough information to allow the fish to evaluate the conspecific sex, and to find the path to reach it. Using a forced-choice test, we show that sexually mature individuals orient themselves along a uniform field in the direction encoded by the time course characteristic of the opposite sex. This indicates that these fish use the stimulus image profile as a spatial guidance clue to find a mate. Embedding species, sex and orientation cues is a particular example of how species can encode multiple messages in the same self-generated communication signal carrier, allowing for other signal parameters (e.g. EOD timing) to carry additional, often circumstantial, messages. This 'multiple messages' EOD embedding approach expressed in this species is likely to be a common and successful strategy that is widespread across evolutionary lineages and among varied signaling modalities.


Subject(s)
Electric Fish , Gymnotiformes , Animal Communication , Animals , Biological Evolution , Electric Organ , Female , Humans , Male , Reproduction
7.
J Exp Biol ; 224(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-33707195

ABSTRACT

Early sensory relay circuits in the vertebrate medulla often adopt a cerebellum-like organization specialized for comparing primary afferent inputs with central expectations. These circuits usually have a dual output, carried by center ON and center OFF neurons responding in opposite ways to the same stimulus at the center of their receptive fields. Here, we show in the electrosensory lateral line lobe of Gymnotiform weakly electric fish that basilar pyramidal neurons, representing 'ON' cells, and non-basilar pyramidal neurons, representing 'OFF' cells, have different intrinsic electrophysiological properties. We used classical anatomical techniques and electrophysiological in vitro recordings to compare these neurons. Basilar neurons are silent at rest, have a high threshold to intracellular stimulation, delayed responses to steady-state depolarization and low pass responsiveness to membrane voltage variations. They respond to low-intensity depolarizing stimuli with large, isolated spikes. As stimulus intensity increases, the spikes are followed by a depolarizing after-potential from which phase-locked spikes often arise. Non-basilar neurons show a pacemaker-like spiking activity, smoothly modulated in frequency by slow variations of stimulus intensity. Spike-frequency adaptation provides a memory of their recent firing, facilitating non-basilar response to stimulus transients. Considering anatomical and functional dimensions, we conclude that basilar and non-basilar pyramidal neurons are clear-cut, different anatomo-functional phenotypes. We propose that, in addition to their role in contrast processing, basilar pyramidal neurons encode sustained global stimuli such as those elicited by large or distant objects while non-basilar pyramidal neurons respond to transient stimuli due to movement of objects with a textured surface.


Subject(s)
Electric Fish , Gymnotiformes , Action Potentials , Animals , Electric Stimulation , Neurons , Phenotype , Pyramidal Cells
8.
J Exp Biol ; 223(Pt 16)2020 08 20.
Article in English | MEDLINE | ID: mdl-32748795

ABSTRACT

Understanding how individuals detect and recognize signals emitted by conspecifics is fundamental to discussions of animal communication. The species pair Gymnotus omarorum and Brachyhypopomus gauderio, found in syntopy in Uruguay, emit species-specific electric organ discharge (EOD) that can be sensed by both species. The aim of this study was to unveil whether either of these species is able to identify a conspecific EOD, and to investigate distinctive recognition signal features. We designed a forced-choice experiment using a natural behavior (i.e. tracking electric field lines towards their source) in which each fish had to choose between a conspecific and a heterospecific electric field. We found a clear pattern of preference for a conspecific waveform even when pulses were played within 1 Hz of the same rate. By manipulating the time course of the explored signals, we found that the signal features for preference between conspecific and heterospecific waveforms were embedded in the time course of the signals. This study provides evidence that pulse Gymnotiformes can recognize a conspecific exclusively through species-specific electrosensory signals. It also suggests that the key signal features for species differentiation are probably encoded by burst coder electroreceptors. Given these results, and because receptors are sharply tuned to amplitude spectra and also tuned to phase spectra, we extend the electric color hypothesis used in the evaluation of objects to apply to communication signals.


Subject(s)
Electric Fish , Gymnotiformes , Animal Communication , Animals , Electric Organ , Fishes
9.
J Fish Biol ; 96(4): 1065-1071, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32077109

ABSTRACT

Studies of pulse-type gymnotiform electric fishes have suggested that electric organ discharge waveforms (EODw) allow individuals to discriminate between conspecific and allospecific signals, but few have approached this experimentally. Here we implement a phase-locked playback technique for a syntopic species pair, Brachyhypopomus gauderio and Gymnotus omarorum. Both species respond to changes in stimulus waveform with a transitory reduction in the interpulse interval of their self-generated discharge, providing strong evidence of discrimination. We also document sustained rate changes in response to different EODws, which may suggest recognition of natural waveforms.


Subject(s)
Electric Fish/physiology , Electromagnetic Phenomena , Gymnotiformes/physiology , Animals , Electric Organ/physiology
10.
Bioinspir Biomim ; 15(3): 035008, 2020 04 09.
Article in English | MEDLINE | ID: mdl-31899911

ABSTRACT

Weakly electric fish polarize the nearby environment with a stereotyped electric field and gain information by detecting the changes imposed by objects with tuned sensors. Here we focus on polarization strategies as paradigmatic bioinspiring mechanisms for sensing devices. We begin this research developing a toy model that describes three polarization strategies exhibited by three different groups of fish. We then report an experimental analysis which confirmed predictions of the model and in turn predicted functional consequences that were explored in behavioral experiments in the pulse fish Gymnotus omarorum. In the experiments, polarization was evaluated by estimating the object's stamp (i.e. the electric source that produces the same electric image as the object) as a function of object impedance, orientation, and position. Signal detection and discrimination was explored in G. omarorum by provoking novelty responses, which are known to reflect the increment in the electric image provoked by a change in nearby impedance. To achieve this, we stepped the longitudinal impedance of a cylindrical object between two impedances (either capacitive or resistive). Object polarization and novelty responses indicate that G. omarorum has two functional regions in the electrosensory field. At the front of the fish, there is a foveal field where object position and orientation are encoded in signal intensity, while the qualia associated with impedance is encoded in signal time course. On the side of the fish there is a peripheral field where the complexity of the polarizing field facilitates detection of objects oriented in any angle with respect to the fish´s longitudinal axis. These findings emphasize the importance of articulating field generation, sensor tuning and the repertoire of exploratory movements to optimize performance of artificial active electrosensory systems.


Subject(s)
Behavior, Animal/physiology , Biosensing Techniques/instrumentation , Gymnotiformes/physiology , Animals , Electric Impedance , Perception
11.
J Exp Biol ; 222(Pt 5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30659081

ABSTRACT

The most broadly expressed and studied aspect of sensory transduction is receptor tuning to the power spectral density of the incoming signals. Temporal cues expressed in the phase spectrum are relevant in African and American pulse-emitting electric fish showing electroreceptors sensing the signals carried by the self- and conspecific-generated electric organ discharges. This article concerns the role of electroreceptor phase sensitivity in American pulse Gymnotiformes. These fish show electroreceptors sharply tuned to narrow frequency bands. This led to the common thought that most electrosensory information is contained in the amplitude spectra of the signals. However, behavioral and modeling studies suggest that in their pulses, Gymnotiformes electroreceptors also encode cues embodied in the phase spectrum of natural stimuli. Here, we show that the two main types of tuberous primary afferents of Gymnotus omarorum differentially respond to cues embodied in the amplitude and phase spectra of self-generated electrosensory signals. One afferent type, pulse markers, is mainly driven by the amplitude spectrum, while the other, burst coders, is predominantly sensitive to the phase spectrum. This dual encoding strategy allows the fish to create a sensory manifold where patterns of 'electric color' generated by object impedance and other potential sources of 'colored' images (such as large nearby objects and other electric fish) can be represented.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Sensory Receptor Cells/physiology , Animals , Electric Impedance
12.
IEEE Trans Biomed Circuits Syst ; 12(3): 689-699, 2018 06.
Article in English | MEDLINE | ID: mdl-29877831

ABSTRACT

There are neural recording applications in which the amplitude of common-mode interfering signals is several orders of magnitude higher than the amplitude of the signals of interest. This challenging situation for neural amplifiers occurs, among other applications, in neural recordings of weakly electric fish or nerve activity recordings made with cuff electrodes. This paper reports an integrated neural amplifier architecture targeting in-vivo recording of local field potentials and unitary signals from the brain stem of a weakly electric fish Gymnotus omarorum. The proposed architecture offers low noise, high common-mode rejection ratio (CMRR), current-efficiency, and a high-pass frequency fixed without MOS pseudoresistors. The main contributions of this work are the overall architecture coupled with an efficient and simple single-stage circuit for the amplifier main transconductor, and the ability of the amplifier to acquire biopotential signals from high-amplitude common-mode interference in an unshielded environment. A fully-integrated neural preamplifier, which performs well in line with the state-of-the-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5  m CMOS process. Results from measurements show that the gain is 49.5 dB, the bandwidth ranges from 13 Hz to 9.8 kHz, the equivalent input noise is 1.88  V, the CMRR is 87 dB and the Noise Efficiency Factor is 2.1. In addition, in-vivo recordings of weakly electric fish neural activity performed by the proposed amplifier are introduced and favorably compared with those of a commercial laboratory instrumentation system.


Subject(s)
Action Potentials/physiology , Electric Fish/physiology , Neurons/physiology , Signal Processing, Computer-Assisted/instrumentation , Animals
13.
Bioinspir Biomim ; 12(2): 025004, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28151730

ABSTRACT

Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.


Subject(s)
Biomimetic Materials , Biomimetics , Electric Fish/physiology , Electric Organ/physiology , Animals , Electric Fish/anatomy & histology , Equipment Design , Gymnotiformes/anatomy & histology , Gymnotiformes/physiology , Movement , Proprioception , Sensory Receptor Cells
14.
J Exp Biol ; 220(Pt 9): 1663-1673, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28202586

ABSTRACT

As in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish Gymnotus omarorum We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge. They also show high sensitivity to phase-frequency distortions of the self-generated local electric field. We explored this sensitivity by manipulating the longitudinal impedance of a probe cylinder to modulate the stimulus waveform, while extracellularly recording isolated primary afferents. Resistive loads only affect the amplitude of the re-afferent signals without distorting the waveform. Capacitive loads cause large waveform distortions aside from amplitude changes. Stepping from a resistive to a capacitive load in such a way that the stimulus waveform was distorted, without changing its total energy, caused strong changes in latency, inter-spike interval and number of spikes of primary afferent responses. These burst parameters are well correlated suggesting that they may contribute synergistically in driving downstream neurons. This correlation also suggests that each receptor encodes a single parameter in the stimulus waveform. The finding of waveform distortion sensitivity is relevant because it may contribute to: (a) enhance electroreceptive range in the peripheral 'electrosensory field', (b) a better identification of living prey at the 'foveal electrosensory field' and (c) detect the presence and orientation of conspecifics. Our results also suggest a revision of the classical view of amplitude and time encoding by fast and slow pathways in pulse-type electric fish.


Subject(s)
Gymnotiformes/physiology , Sensation/physiology , Sensory Receptor Cells/physiology , Animals , Electric Impedance , Electrophysiological Phenomena
15.
Front Neurosci ; 11: 732, 2017.
Article in English | MEDLINE | ID: mdl-29354028

ABSTRACT

Key scientific discoveries have resulted from genetic studies of Drosophila melanogaster, using a multitude of transgenic fly strains, the majority of which are constructed in a genetic background containing mutations in the white gene. Here we report that white mutant flies from w1118 strain undergo retinal degeneration. We observed also that w1118 mutants have progressive loss of climbing ability, shortened life span, as well as impaired resistance to various forms of stress. Retinal degeneration was abolished by transgenic expression of mini-white+ in the white null background w1118 . We conclude that beyond the classical eye-color phenotype, mutations in Drosophila white gene could impair several biological functions affecting parameters like mobility, life span and stress tolerance. Consequently, we suggest caution and attentiveness during the interpretation of old experiments employing white mutant flies and when planning new ones, especially within the research field of neurodegeneration and neuroprotection. We also encourage that the use of w1118 strain as a wild-type control should be avoided.

16.
J Physiol Paris ; 110(3 Pt B): 164-181, 2016 10.
Article in English | MEDLINE | ID: mdl-27794446

ABSTRACT

Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon.


Subject(s)
Electric Organ/physiology , Electromagnetic Phenomena , Gymnotiformes/physiology , Animals , Rivers , Tropical Climate
17.
J Physiol Paris ; 108(2-3): 71-83, 2014.
Article in English | MEDLINE | ID: mdl-25088503

ABSTRACT

This is a first communication on the self-activation pattern of the electrosensory lobe in the pulse weakly electric fish Gymnotus omarorum. Field potentials in response to the fish's own electric organ discharge (EOD) were recorded along vertical tracks (50µm step) and on a transversal lattice array across the electrosensory lobe (resolution 50µm×100µm). The unitary activity of 82 neurons was recorded in the same experiments. Field potential analysis indicates that the slow electrosensory path shows a characteristic post-EOD pattern of activity marked by three main events: (i) a small and early component at about 7ms, (ii) an intermediate peak about 13ms and (iii) a late broad component peaking after 20ms. Unit firing rate showed a wide range of latencies between 3 and 30ms and a variable number of spikes (median 0.28units/EOD). Conditional probability analysis showed monomodal and multimodal post-EOD histograms, with the peaks of unit activity histograms often matching the timing of the main components of the field potentials. Monomodal responses were sub-classified as phase locked monomodal (variance smaller than 1ms), early monomodal (intermediate variance, often firing in doublets, peaking range 10-17ms) and late monomodal (large variance, often firing two spikes separated about 10ms, peaking beyond 17ms). The responses of multimodal units showed that their firing probability was either enhanced, or depressed just after the EOD. In this last (depressed) subtype of unit the probability stepped down just after the EOD. Early inhibition and the presence of early phase locked units suggest that the observed pattern may be influenced by a fast feed forward inhibition. We conclude that the ELL in pulse gymnotiformes is activated in a complex sequence of events that reflects the ELL network connectivity.


Subject(s)
Electric Fish/physiology , Electric Organ/physiology , Neural Pathways/physiology , Action Potentials/physiology , Animals , Decerebrate State , Electric Organ/anatomy & histology , Electric Organ/innervation , Electrophysiological Phenomena
18.
PLoS Comput Biol ; 10(7): e1003722, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010765

ABSTRACT

Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the "electrosensory fovea" appears suitable for exploring objects in detail, the rest of the body is likened to a "peripheral retina" for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Models, Biological , Animals , Computational Biology , Electricity
19.
Brain Res ; 1536: 27-43, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-23727613

ABSTRACT

Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.


Subject(s)
Electric Organ/physiology , Electrophysiological Phenomena , Perception/physiology , Sensory Receptor Cells/physiology , Animals , Electric Fish/physiology
20.
J Exp Biol ; 216(Pt 13): 2380-92, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761463

ABSTRACT

This review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa. First, we refer to the one-spike neuron intrinsic properties, their foundation on a low-threshold K(+) conductance, and the potential roles of this phenotype in different circuits within a comparative framework. Second, we present a brief description of the active electric sense of weakly electric fish and the particularities of spherical one-spike-onset neurons in the electrosensory lobe of G. omarorum. Third, we introduce one of the specific tasks in which these neurons are involved: the trade-off between self- and allo-generated signals. Fourth, we discuss recent evidence indicating a still-undescribed role for the one-spike phenotype. This role deals with the blockage of the pathway after being activated by the self-generated electric organ discharge and how this blockage favors self-generated electrosensory information in the context of allo-generated interference. Based on comparative analysis we conclude that one-spike-onset neurons may play several functional roles in animal sensory behavior. There are specific adaptations of the neuron's 'response function' to the circuit and task. Conversely, the way in which a task is accomplished depends on the intrinsic properties of the neurons involved. In short, the role of a neuron within a circuit depends on the neuron and its functional context.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Neurons/physiology , Animals , Nerve Net/cytology , Nerve Net/physiology , Neurons/cytology , Phenotype , Sensation
SELECTION OF CITATIONS
SEARCH DETAIL
...