Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5142, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902236

ABSTRACT

Characterization and modeling of biological neural networks has emerged as a field driving significant advancements in our understanding of brain function and related pathologies. As of today, pharmacological treatments for neurological disorders remain limited, pushing the exploration of promising alternative approaches such as electroceutics. Recent research in bioelectronics and neuromorphic engineering have fostered the development of the new generation of neuroprostheses for brain repair. However, achieving their full potential necessitates a deeper understanding of biohybrid interaction. In this study, we present a novel real-time, biomimetic, cost-effective and user-friendly neural network capable of real-time emulation for biohybrid experiments. Our system facilitates the investigation and replication of biophysically detailed neural network dynamics while prioritizing cost-efficiency, flexibility and ease of use. We showcase the feasibility of conducting biohybrid experiments using standard biophysical interfaces and a variety of biological cells as well as real-time emulation of diverse network configurations. We envision our system as a crucial step towards the development of neuromorphic-based neuroprostheses for bioelectrical therapeutics, enabling seamless communication with biological networks on a comparable timescale. Its embedded real-time functionality enhances practicality and accessibility, amplifying its potential for real-world applications in biohybrid experiments.


Subject(s)
Biomimetics , Nervous System Diseases , Neural Networks, Computer , Humans , Biomimetics/methods , Nerve Net/physiology , Animals , Models, Neurological , Action Potentials/physiology , Neurons/physiology , Neurons/metabolism
2.
Front Neurosci ; 18: 1363128, 2024.
Article in English | MEDLINE | ID: mdl-38516316

ABSTRACT

Despite considerable advancement of first choice treatment (pharmacological, physical therapy, etc.) over many decades, neurological disorders still represent a major portion of the worldwide disease burden. Particularly concerning, the trend is that this scenario will worsen given an ever expanding and aging population. The many different methods of brain stimulation (electrical, magnetic, etc.) are, on the other hand, one of the most promising alternatives to mitigate the suffering of patients and families when conventional treatment fall short of delivering efficacious treatment. With applications in virtually all neurological conditions, neurostimulation has seen considerable success in providing relief of symptoms. On the other hand, a large variability of therapeutic outcomes has also been observed, particularly in the usage of non-invasive brain stimulation (NIBS) modalities. Borrowing inspiration and concepts from its pharmacological counterpart and empowered by unprecedented neurotechnological advancement, the neurostimulation field has seen in recent years a widespread of methods aimed at the personalization of its parameters, based on biomarkers of the individuals being treated. The rationale is that, by taking into account important factors influencing the outcome, personalized stimulation can yield a much-improved therapy. Here, we review the literature to delineate the state-of-the-art of personalized stimulation, while also considering the important aspects of the type of informing parameter (anatomy, function, hybrid), invasiveness, and level of development (pre-clinical experimentation versus clinical trials). Moreover, by reviewing relevant literature on closed loop neuroengineering solutions in general and on activity dependent stimulation method in particular, we put forward the idea that improved personalization may be achieved when the method is able to track in real time brain dynamics and adjust its stimulation parameters accordingly. We conclude that such approaches have great potential of promoting the recovery of lost functions and enhance the quality of life for patients.

3.
Front Neurosci ; 16: 915707, 2022.
Article in English | MEDLINE | ID: mdl-36507352

ABSTRACT

Introduction: Difficulties faced while walking are common symptoms after stroke, significantly reducing the quality of life. Walking recovery is therefore one of the main priorities of rehabilitation. Wearable powered exoskeletons have been developed to provide lower limb assistance and enable training for persons with gait impairments by using typical physiological movement patterns. Exoskeletons were originally designed for individuals without any walking capacities, such as subjects with complete spinal cord injuries. Recent systematic reviews suggested that lower limb exoskeletons could be valid tools to restore independent walking in subjects with residual motor function, such as persons post-stroke. To ensure that devices meet end-user needs, it is important to understand and incorporate their perspectives. However, only a limited number of studies have followed such an approach in the post-stroke population. Methods: The aim of the study was to identify the end-users needs and to develop a user-centered-based control system for the TWIN lower limb exoskeleton to provide post-stroke rehabilitation. We thus describe the development and validation, by clinical experts, of TWIN-Acta: a novel control suite for TWIN, specifically designed for persons post-stroke. We detailed the conceived control strategy and developmental phases, and reported evaluation sessions performed on healthy clinical experts and people post-stroke to evaluate TWIN-Acta usability, acceptability, and barriers to usage. At each developmental stage, the clinical experts received a one-day training on the TWIN exoskeleton equipped with the TWIN-Acta control suite. Data on usability, acceptability, and limitations to system usage were collected through questionnaires and semi-structured interviews. Results: The system received overall good usability and acceptability ratings and resulted in a well-conceived and safe approach. All experts gave excellent ratings regarding the possibility of modulating the assistance provided by the exoskeleton during the movement execution and concluded that the TWIN-Acta would be useful in gait rehabilitation for persons post-stroke. The main limit was the low level of system learnability, attributable to the short-time of usage. This issue can be minimized with prolonged training and must be taken into consideration when planning rehabilitation. Discussion: This study showed the potential of the novel control suite TWIN-Acta for gait rehabilitation and efficacy studies are the next step in its evaluation process.

4.
Brain Sci ; 12(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421904

ABSTRACT

Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.

5.
Article in English | MEDLINE | ID: mdl-35604961

ABSTRACT

Activity dependent stimulation (ADS) is a closed loop stimulation technique whose neurophysiological effects have not been deeply investigated. Here we explored how Local field Potentials (LFP) are impacted by a focal ischemic lesion and, subsequently, by ADS treatment. Intracortical microelectrode arrays were implanted in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) of anaesthetized rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. The lesion induced an acute depressive trend in LFP power in RFA (evaluated in 6 bands of interest: Delta (1-4Hz), Theta (4-8Hz), Alpha (8-11Hz), Beta (11-30Hz), LowGamma (30-55Hz) and HighGamma (55-80)) followed by a noticeable significant rebound in both areas. Applying ADS induced an overall decrease of power. The lesion impacted the connectivity in a frequency specific manner, resulting in widespread increase in connectivity in Delta both between and within areas. Two hours after the lesion, without stimulation, correlated activity between areas increased in Beta and Gamma. After stimulation, inter-area connectivity increased in Delta, Theta and Alpha, while considerably dropping within RFA in highGamma. By computing phase-amplitude coupling, we found that the lesion produced an incremental increase in the coupling between (Theta) Alpha phase and (lowGamma) highGamma amplitude within RFA, while S1 had a more generalized increase. Likewise, coupling between Theta phase and lowGamma/highGamma amplitudes increased between areas after lesion. ADS induced a similar increase, but greater in magnitude both within and between RFA and S1. These results have important implications on the emerging field of closed-loop adaptive stimulation promoting ADS as an innovative tool for the treatment of neurological disorders.


Subject(s)
Brain , Forelimb , Animals , Forelimb/physiology , Humans , Microelectrodes , Rats
6.
Bioelectron Med ; 8(1): 4, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35220964

ABSTRACT

BACKGROUND: Acquired brain injuries, such as stroke, are a major cause of long-term disability worldwide. Intracortical microstimulation (ICMS) can be used successfully to assist in guiding appropriate connections to restore lost sensorimotor integration. Activity-Dependent Stimulation (ADS) is a specific type of closed-loop ICMS that aims at coupling the activity of two different brain regions by stimulating one in response to activity in the other. Recently, ADS was used to effectively promote behavioral recovery in rodent models following a unilateral traumatic brain injury in the primary motor cortex. While behavioral benefits have been described, the neurophysiological changes in spared areas in response to this type of stimulation have not been fully characterized. Here we explored how single-unit spiking activity is impacted by a focal ischemic lesion and, subsequently, by an ADS treatment. METHODS: Intracortical microelectrode arrays were implanted in the ipsilesional rostral forelimb area (RFA) to record spike activity and to trigger intracortical microstimulation in the primary somatosensory area (S1) of anaesthetized Long Evans rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. Activity from both RFA and S1 was recorded and analyzed off-line by evaluating possible changes, either induced by the lesion in the Control group or by stimulation in the ADS group. RESULTS: We found that the ischemic lesion in the motor area led to an overall increase in spike activity within RFA and a decrease in S1 with respect to the baseline condition. Subsequent treatment with ADS increased the firing rate in both RFA and S1. Post-stimulation spiking activity was significantly higher compared to pre-stimulation activity in the ADS animals versus non-stimulated controls. Moreover, stimulation promoted the generation of highly synchronized bursting patterns in both RFA and S1 only in the ADS group. CONCLUSIONS: This study describes the impact on single-unit activity in ipsilesional areas immediately following a cortical infarct and demonstrates that application of ADS is effective in altering this activity.

7.
Somatosens Mot Res ; 36(2): 162-170, 2019 06.
Article in English | MEDLINE | ID: mdl-31267810

ABSTRACT

The development of an easy to implement, quantitative measure to examine vibration perception would be useful for future application in clinical settings. Vibration sense in the lower limb of younger and older adults was examined using the method of constant stimuli (MCS) and the two-alternative forced choice paradigm. The focus of this experiment was to determine an appropriate stimulation site on the lower limb (tendon versus bone) to assess vibration threshold and to determine if the left and right legs have varying thresholds. Discrimination thresholds obtained at two stimulation sites in the left and right lower limbs showed differences in vibration threshold across the two ages groups, but not across sides of the body nor between stimulation sites within each limb. Overall, the MCS can be implemented simply, reliably, and with minimal time. It can also easily be implemented with low-cost technology. Therefore, it could be a good candidate method to assess the presence of specific deep sensitivity deficits in clinical practice, particularly in populations likely to show the onset of sensory deficits.


Subject(s)
Choice Behavior/physiology , Discrimination Learning/physiology , Lower Extremity/physiology , Sensory Thresholds/physiology , Touch Perception/physiology , Vibration , Aged , Aged, 80 and over , Female , Humans , Male , Physical Stimulation/methods , Random Allocation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL