Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 13: 843490, 2022.
Article in English | MEDLINE | ID: mdl-35836424

ABSTRACT

Phosphorus (P) is one of the most critical macronutrients in forest ecosystems. More than 70 years ago, some Chilean Patagonian temperate forests suffered wildfires and the subsequent afforestation with foreign tree species such as pines. Since soil P turnover is interlinked with the tree cover, this could influence soil P content and bioavailability. Next to soil microorganisms, which are key players in P transformation processes, a vital component of Patagonian temperate forest are lichens, which represent microbial hotspots for bacterial diversity. In the present study, we explored the impact of forest cover on the abundance of phosphate solubilizing bacteria (PSB) from three microenvironments of the forest floor: Peltigera frigida lichen thallus, their underlying substrates, and the forest soil without lichen cover. We expected that the abundance of PSB in the forest soil would be strongly affected by the tree cover composition since the aboveground vegetation influences the edaphic properties; but, as P. frigida has a specific bacterial community, lichens would mitigate this impact. Our study includes five sites representing a gradient in tree cover types, from a mature forest dominated by the native species Nothofagus pumilio, to native second-growth forests with a gradual increase in the presence of Pinus contorta in the last sites. In each site, we measured edaphic parameters, P fractions, and the bacterial potential to solubilize phosphate by quantifying five specific marker genes by qPCR. The results show higher soluble P, labile mineral P, and organic matter in the soils of the sites with a higher abundance of P. contorta, while most of the molecular markers were less abundant in the soils of these sites. Contrarily, the abundance of the molecular markers in lichens and substrates was less affected by the tree cover type. Therefore, the bacterial potential to solubilize phosphate is more affected by the edaphic factors and tree cover type in soils than in substrates and thalli of P. frigida lichens. Altogether, these results indicate that the microenvironments of lichens and their substrates could act as an environmental buffer reducing the influence of forest cover composition on bacteria involved in P turnover.

2.
Microb Ecol ; 84(3): 935-940, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34599356

ABSTRACT

Soil microorganisms play an essential role in biogeochemical cycles. One approach to study these microbial communities is quantifying functional genes by quantitative PCR (qPCR), in which a melting curve analysis is usually assessed to confirm that a single PCR product is being quantified. However, the high diversity of functional genes in environmental samples could generate more than one peak in those curves, so the presence of two or multiple peaks does not always indicate nonspecific amplification. Here, we analyzed the taxonomic diversity of soil microorganisms harboring functional genes involved in nitrogen (N) and phosphorus (P) cycles, based on a database of genomes and metagenomes, and predicted the melting curve profiles of these genes. These functional genes were spread across many bacterial phyla, but mainly Proteobacteria and Actinobacteria. In general, the melting curves exhibited more than one peak or peaks with shoulders, mainly related to the variation of the nucleotide composition of the genes and the expected size of the amplicons. These results indicate that the melting curves of functional genes from environmental samples should be carefully evaluated, being in silico analyses a cost-effective way to identify inherent sequence diversity and avoid interpreting multiple peaks always as unspecific amplifications.


Subject(s)
Nitrogen , Soil Microbiology , Nitrogen/analysis , Phosphorus , Bacteria/genetics , Soil/chemistry , Real-Time Polymerase Chain Reaction
3.
Microb Ecol ; 81(4): 965-976, 2021 May.
Article in English | MEDLINE | ID: mdl-33404820

ABSTRACT

Lichens host highly diverse microbial communities, with bacteria being one of the most explored groups in terms of their diversity and functioning. These bacteria could partly originate from symbiotic propagules developed by many lichens and, perhaps more commonly and depending on environmental conditions, from different sources of the surroundings. Using the narrowly distributed species Peltigera frigida as an object of study, we propose that bacterial communities in these lichens are different from those in their subjacent substrates, even if some taxa might be shared. Ten terricolous P. frigida lichens and their substrates were sampled from forested sites in the Coyhaique National Reserve, located in an understudied region in Chile. The mycobiont identity was confirmed using partial 28S and ITS sequences. Besides, 16S fragments revealed that mycobionts were associated with the same cyanobacterial haplotype. From both lichens and substrates, Illumina 16S amplicon sequencing was performed using primers that exclude cyanobacteria. In lichens, Proteobacteria was the most abundant phylum (37%), whereas soil substrates were dominated by Acidobacteriota (39%). At lower taxonomic levels, several bacterial groups differed in relative abundance among P. frigida lichens and their substrates, some of them being highly abundant in lichens but almost absent in substrates, like Sphingomonas (8% vs 0.2%), and others enriched in lichens, as an unassigned genus of Chitinophagaceae (10% vs 2%). These results reinforce the idea that lichens would carry some components of their microbiome when propagating, but they also could acquire part of their bacterial community from the substrates.


Subject(s)
Ascomycota , Cyanobacteria , Lichens , Microbiota
4.
PLoS One ; 14(1): e0209887, 2019.
Article in English | MEDLINE | ID: mdl-30625192

ABSTRACT

Seabirds and pinnipeds play an important role in biogeochemical cycling by transferring nutrients from aquatic to terrestrial environments. Indeed, soils rich in animal depositions have generally high organic carbon, nitrogen and phosphorus contents. Several studies have assessed bacterial diversity in Antarctic soils influenced by marine animals; however most have been conducted in areas with significant human impact. Thus, we chose Cape Shirreff, Livingston Island, an Antarctic Specially Protected Area designated mainly to protect the diversity of marine vertebrate fauna, and selected sampling sites with different types of animals coexisting in a relatively small space, and where human presence and impact are negligible. Using 16S rRNA gene analyses through massive sequencing, we assessed the influence of animal concentrations, via their modification of edaphic characteristics, on soil bacterial diversity and composition. The nutrient composition of soils impacted by Antarctic fur seals and kelp gulls was more similar to that of control soils (i.e. soils without visible presence of plants or animals), which may be due to the more active behaviour of these marine animals compared to other species. Conversely, the soils from concentrations of southern elephant seals and penguins showed greater differences in soil nutrients compared to the control. In agreement with this, the bacterial communities of the soils associated with these animals were most different from those of the control soils, with the soils of penguin colonies also possessing the lowest bacterial diversity. However, all the soils influenced by the presence of marine animals were dominated by bacteria belonging to Gammaproteobacteria, particularly those of the genus Rhodanobacter. Therefore, we conclude that the modification of soil nutrient composition by marine vertebrates promotes specific groups of bacteria, which could play an important role in the recycling of nutrients in terrestrial Antarctic ecosystems.


Subject(s)
Birds , Caniformia , Ecosystem , Soil Microbiology , Soil/chemistry , Animals , Antarctic Regions , Bacteria , Nitrogen/analysis , Phosphorus/analysis
5.
Molecules ; 23(12)2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30477264

ABSTRACT

Lichens have been extensively studied and described; however, recent evidence suggests that members of the bacterial community associated with them could contribute new functions to the symbiotic interaction. In this work, we compare the nitrogen-fixing guild associated with bipartite terricolous lichens with different types of photobiont: Peltigera cyanolichens and Cladonia chlorolichens. Since cyanobacteria contribute nitrogen to the symbiosis, we propose that chlorolichens have more diverse bacteria with the ability to fix nitrogen compared to cyanolichens. In addition, since part of these bacteria could be recruited from the substrate where lichens grow, we propose that thalli and substrates share some bacteria in common. The structure of the nitrogen-fixing guild in the lichen and substrate bacterial communities of both lichens was determined by terminal restriction fragment length polymorphism (TRFLP) of the nifH gene. Multivariate analyses showed that the nitrogen-fixing bacteria associated with both types of lichen were distinguishable from those present in their substrates. Likewise, the structure of the nitrogen-fixing bacteria present in the cyanolichens was different from that of chlorolichens. Finally, the diversity of this bacterial guild calculated using the Shannon index confirms the hypothesis that chlorolichens have a higher diversity of nitrogen-fixing bacteria than cyanolichens.


Subject(s)
Ascomycota/physiology , Nitrogen-Fixing Bacteria/physiology , Analysis of Variance , Ascomycota/classification , Molecular Typing/methods , RNA, Ribosomal, 28S/genetics , Symbiosis
6.
Molecules ; 23(11)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30355963

ABSTRACT

Lichens are a symbiotic association between a fungus and a green alga or a cyanobacterium, or both. They can grow in practically any terrestrial environment and play crucial roles in ecosystems, such as assisting in soil formation and degrading soil organic matter. In their thalli, they can host a wide diversity of non-photoautotrophic microorganisms, including bacteria, which play important functions and are considered key components of the lichens. In this work, using the BioLog® EcoPlate system, we studied the consumption kinetics of different carbon-sources by microbial communities associated with the thallus and the substrate of Peltigera lichens growing in a Chilean temperate rain forest dominated by Nothofagus pumilio. Based on the similarity of the consumption of 31 carbon-sources, three groups were formed. Among them, one group clustered the microbial metabolic profiles of almost all the substrates from one of the sampling sites, which exhibited the highest levels of consumption of the carbon-sources, and another group gathered the microbial metabolic profiles from the lichen thalli with the most abundant mycobiont haplotypes. These results suggest that the lichen thallus has a higher impact on the metabolism of its microbiome than on the microbial community of its substrate, with the latter being more diverse in terms of the metabolized sources and whose activity level is probably related to the availability of soil nutrients. However, although significant differences were detected in the microbial consumption of several carbon-sources when comparing the lichen thallus and the underlying substrate, d-mannitol, l-asparagine, and l-serine were intensively metabolized by both communities, suggesting that they share some microbial groups. Likewise, some communities showed high consumption of 2-hydroxybenzoic acid, d-galacturonic acid, and itaconic acid; these could serve as suitable sources of microorganisms as bioresources of novel bioactive compounds with biotechnological applications.


Subject(s)
Carbon/metabolism , Forests , Lichens/metabolism , Lichens/microbiology , Microbiota , Chile , Metabolome , Metabolomics
7.
Microb Ecol ; 74(3): 561-569, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28349162

ABSTRACT

Photobiont availability is one of the main factors determining the success of the lichenization process. Although multiple sources of photobionts have been proposed, there is no substantial evidence confirming that the substrates on which lichens grow are one of them. In this work, we obtained cyanobacterial 16S ribosomal RNA gene sequences from the substrates underlying 186 terricolous Peltigera cyanolichens from localities in Southern Chile and maritime Antarctica and compared them with the sequences of the cyanobionts of these lichens, in order to determine if cyanobacteria potentially available for lichenization were present in the substrates. A phylogenetic analysis of the sequences showed that Nostoc phylotypes dominated the cyanobacterial communities of the substrates in all sites. Among them, an overlap was observed between the phylotypes of the lichen cyanobionts and those of the cyanobacteria present in their substrates, suggesting that they could be a possible source of lichen photobionts. Also, in most cases, higher Nostoc diversity was observed in the lichens than in the substrates from each site. A better understanding of cyanobacterial diversity in lichen substrates and their relatives in the lichens would bring insights into mycobiont selection and the distribution patterns of lichens, providing a background for hypothesis testing and theory development for future studies of the lichenization process.


Subject(s)
Cyanobacteria/genetics , Lichens/physiology , Soil Microbiology , Symbiosis , Lichens/microbiology , Nostoc/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
8.
FEMS Microbiol Ecol ; 92(11)2016 11.
Article in English | MEDLINE | ID: mdl-27543320

ABSTRACT

Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients.


Subject(s)
Ascomycota/physiology , Bacteria/metabolism , Bacterial Physiological Phenomena , Lichens/microbiology , Microbiota/physiology , Symbiosis/physiology , Ascomycota/classification , Ascomycota/genetics , Bacteria/classification , Bacteria/genetics , Lichens/metabolism , Soil , Soil Microbiology
9.
Res Microbiol ; 167(2): 126-32, 2016.
Article in English | MEDLINE | ID: mdl-26506029

ABSTRACT

Darwin's naturalization hypothesis suggests that the success of an invasive species will be lower when colonizing communities are formed by phylogenetically related rather than unrelated species due to increased competition. Although microbial invasions are involved in both natural and anthropogenic processes, factors affecting the success of microbial invaders are unknown. A biological invasion assay was designed using Trichoderma cf. harzianum as the invader and two types of recipient communities assembled in microcosm assays: communities phylogenetically related to the invader, and communities phylogenetically unrelated to it. Both types of communities were invaded by T. cf. harzianum, and the success of colonization was monitored by qPCR; its effect on the genetic structure of recipient fungal communities was then assessed by DGGE profiles. T. cf. harzianum established itself in both communities, reaching 1000-10,000 times higher copy numbers in the non-related communities. However, invader establishment does not affect the structure of the invaded communities. These results suggest that the composition of recipient communities and their phylogenetic relationship to the invader affect the success of colonization by T. cf. harzianum. While this approach represents a very simplified assay, these microcosms enable an experimental test of Darwin's hypothesis in order to understand the biological invasion process in microbial communities.


Subject(s)
Biota , Fungi/growth & development , Introduced Species , Colony Count, Microbial , Denaturing Gradient Gel Electrophoresis , Phylogeny , Real-Time Polymerase Chain Reaction , Selection, Genetic
10.
Microbes Environ ; 30(2): 172-9, 2015.
Article in English | MEDLINE | ID: mdl-25925273

ABSTRACT

The lichen genus Peltigera has been mainly revised in the Northern Hemisphere, with most species being recorded in Europe and North America. This study assessed the phylogenetic diversity of the mycobionts and cyanobionts of Peltigera cyanolichens collected in Southern Chile and Antarctica, areas in which lichens are extremely diverse but poorly studied. The operational taxonomic units (OTUs) of each symbiont were defined by analyzing the genetic diversity of the LSU and SSU rDNA of the mycobionts and cyanobionts, respectively, and a phylogenetic approach was used to relate these OTUs with sequences previously reported for Peltigera and Nostoc. Among the 186 samples collected, 8 Peltigera and 15 Nostoc OTUs were recognized, corresponding to sections Peltigera, Horizontales, and Polydactylon, in the case of the mycobionts, and to the Nostoc clade II, in the case of the cyanobionts. Since some of the OTUs recognized in this study had not previously been described in these areas, our results suggest that the diversity of Peltigera reported to date in the regions studied using traditional morphological surveys has underestimated the true diversity present; therefore, further explorations of these areas are recommended.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Environmental Microbiology , Genetic Variation , Symbiosis , Antarctic Regions , Ascomycota/physiology , Chile , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
11.
J Zhejiang Univ Sci B ; 15(11): 966-78, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25367789

ABSTRACT

Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20-23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community.


Subject(s)
DNA Fingerprinting/methods , DNA Primers/genetics , DNA, Fungal/genetics , Random Amplified Polymorphic DNA Technique/methods , Sequence Analysis, DNA/methods , Trichoderma/genetics , Base Sequence , Genetic Markers/genetics , Molecular Sequence Data , Species Specificity , Trichoderma/classification , Trichoderma/isolation & purification
12.
Phytochemistry ; 98: 101-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24378220

ABSTRACT

Bradyrhizobium japonicum bacteroids isolated from root nodules of soybean (Glycine max.) plants converted the gibberellin (GA) precursor [(14)C1]GA12 into several products identified by combined gas chromatography-mass spectrometry as [(14)C1]GA24, [(14)C1]GA9, [(14)C1]GA15, GA9 17-nor-16-one and unidentified products. The oxidation of GA12, catalyzed by the GA 20-oxidase, was present in symbiotic bacteroids from plants around flowering, but not in bacteroids from plants at either an early vegetative stage or at late growth stages. Expression of cps and ks genes, involved in ent-kaurene biosynthesis, was also demonstrated in bacteroids from soybean plants around flowering. Earlier precursors of the GA pathway, ent-[(14)C1]kaurenoic acid or [(14)C4]GA12-aldehyde, were efficiently utilized by B. japonicum bacteroids to give labelled GA9 plus intermediates partially oxidized at C-20, as well as GA9 17-nor-16-one and an unidentified product. No 3ß or 13-hydroxylated [(14)C]GAs were detected in any of the incubations. Moreover the C19-GAs [(14)C1]GA4 or [(14)C1]GA20 were recovered unconverted upon incubation with the bacteroids which supports the absence of GA 3ß-hydroxylase activity in B. japonicum. The bacterial 20-oxidase utilized the 13-hydroxylated substrates [(14)C1]GA53, [(14)C1]GA44 or [(14)C1]GA19, although with less efficiency than [(14)C1]GA12 to give [(14)C1]GA20 as final product, while the 3ß-hydroxylated substrate [(14)C1]GA14 was converted to [(14)C1]GA4 to a very small extent. Endogenous GA9 and GA24 were identified by GC-MS in methanolic nodule extracts. These results suggest that B. japonicum bacteroids would synthesize GA9 under the symbiotic conditions present in soybean root nodules.


Subject(s)
Bacterial Proteins/metabolism , Bradyrhizobium/metabolism , Mixed Function Oxygenases/metabolism , Bacterial Proteins/chemistry , Bradyrhizobium/chemistry , Enzyme Activation , Gibberellins/biosynthesis , Gibberellins/chemistry , Gibberellins/metabolism , Molecular Conformation , Plant Roots/microbiology , Glycine max/microbiology
13.
World J Microbiol Biotechnol ; 30(3): 1141-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24165746

ABSTRACT

The structure of the associated bacterial community of bipartite cyanolichens of the genus Peltigera from three different environmental contexts in the Karukinka Natural Park, Tierra del Fuego, Chile, was assessed. The sampling sites represent different habitat contexts: mature native forest, young native forest and grassland. Recently it has been determined that the bacterial community associated to lichens could be highly structured according to the mycobiont or photobiont identities, to the environmental context and/or to the geographic scale. However, there are some inconsistencies in defining which of these factors would be the most significant on determining the structure of the microbial communities associated with lichens, mainly because most studies compare the bacterial communities between different lichen species and/or with different photobiont types (algae vs. cyanobacteria). In this work bipartite lichens belonging to the same genus (Peltigera) symbiotically associated with cyanobacteria (Nostoc) were analyzed by TRFLP to determine the structure of the bacterial community intimately associated with the lichen thalli and the one present in the substrate where they grow. The results indicate that the bacterial community intimately associated differs from the one of the substrate, being the former more influenced by the environmental context where the lichen grows.


Subject(s)
Ascomycota/physiology , Biota , Environmental Microbiology , Nostoc/physiology , Symbiosis , Ascomycota/growth & development , Chile , Nostoc/classification , Nostoc/growth & development , Nostoc/isolation & purification
14.
Int. microbiol ; 16(4): 243-252, dic. 2013. ilus
Article in English | IBECS | ID: ibc-125455

ABSTRACT

Decreasing quality of forest habitats is among the major factors leading to a loss of epiphytic lichen diversity. However, there is little information about how this factor influences the diversity of terricolous lichens, which do not grow over living trees and could be less susceptible to such disturbances. In this work we describe the genetic diversity of Peltigeraterricolous cyanolichens and their cyanobiont (Nostoc) from three habitats at the Karukinka Natural Park (Tierra del Fuego, southern Chile), which represent different conservation states: native mature-forest (low disturbance intensity), native young forest (medium disturbance intensity) and grassland (high disturbance intensity). In both forest contexts, a higher diversity and a higher number of unique OTUs (operational taxonomic units) were found. In contrast, in the grassland, the diversity was lower and the Peltigera species were mostly cosmopolitan. The presence of unique OTUs and the higher diversity of lichens in native forest areas highlight the importance of their preservation, indicating that decreasing forest quality also has a negative impact on terricolous lichens diversity (AU)


No disponible


Subject(s)
Humans , Genetic Variation , Trees/parasitology , Lichens/isolation & purification , Lichens/genetics , Nostoc/isolation & purification
15.
Int Microbiol ; 16(4): 243-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25102725

ABSTRACT

Decreasing quality of forest habitats is among the major factors leading to a loss of epiphytic lichen diversity. However, there is little information about how this factor influences the diversity of terricolous lichens, which do not grow over living trees and could be less susceptible to such disturbances. In this work we describe the genetic diversity of Peltigera terricolous cyanolichens and their cyanobiont (Nostoc) from three habitats at the Karukinka Natural Park (Tierra del Fuego, southern Chile), which represent different conservation states: native mature-forest (low disturbance intensity), native young-forest (medium disturbance intensity) and grassland (high disturbance intensity). In both forest contexts, a higher diversity and a higher number of unique OTUs (operational taxonomic units) were found. In contrast, in the grassland, the diversity was lower and the Peltigera species were mostly cosmopolitan. The presence of unique OTUs and the higher diversity of lichens in native forest areas highlight the importance of their preservation, indicating that decreasing forest quality also has a negative impact on terricolous lichens diversity.


Subject(s)
Ascomycota/genetics , Genetic Variation , Trees/microbiology , Ascomycota/classification , Ascomycota/isolation & purification , Biodiversity , Chile , Conservation of Natural Resources , Ecosystem , Lichens/microbiology , Molecular Sequence Data , Phylogeny
16.
Front Microbiol ; 3: 282, 2012.
Article in English | MEDLINE | ID: mdl-22973261

ABSTRACT

Water availability is the main limiting factor in arid soils; however, few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosms (p < 0.001). This stimulation of net nitrification by water addition was inhibited by acetylene addition at 100 Pa. The composition of AOA and AOB assemblages from the soils microcosms was determined by clone sequencing of amoA genes (A-amoA and B-amoA, respectively), and the 16S rRNA genes specific for ß-proteobacteria (beta-amo). Sequencing of beta-amo genes has revealed representatives of Nitrosomonas and Nitrosospira while B-amoA clones consisted only of Nitrosospira sequences. Furthermore, all clones from the archaeal amoA gene library (A-amoA) were related to "mesophilic Crenarchaeota" sequences (actually, reclassified as the phylum Thaumarchaeota). The effect of water availability on both microbial assemblages structure was determined by T-RFLP profiles using the genetic markers amoA for archaea, and beta-amo for bacteria. While AOA showed fluctuations in some T-RFs, AOB structure remained unchanged by water pulses. The relative abundance of AOA and AOB was estimated by the Most Probable Number coupled to Polymerase Chain Reaction (MPN-PCR) assay. AOB was the predominant guild in this soil and higher soil water content did not affect their abundance, in contrast to AOA, which slightly increased under these conditions. Therefore, these results suggest that water addition to these semiarid soil microcosms could favor archaeal contribution to ammonium oxidation.

17.
Front Microbiol ; 3: 101, 2012.
Article in English | MEDLINE | ID: mdl-22493591

ABSTRACT

The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

18.
J Zhejiang Univ Sci B ; 10(2): 112-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19235269

ABSTRACT

A protocol of polymerase chain reaction-random amplified polymorphic DNAs (PCR-RAPDs) was established to analyse the gene diversity and genotype identification for clones of Sequoia sempervirens (D. Don) Endl. in Chile. Ten (out of 34) clones from introduction trial located in Voipir-Villarrica, Chile, were studied. The PCR-RAPDs technique and a modified hexadecyltrimethylammonium bromide (CTAB) protocol were used for genomic DNA extraction. The PCR tests were carried out employing 10-mer random primers. The amplification products were detected by electrophoresis in agarose gels. Forty nine polymorphic bands were obtained with the selected primers (BG04, BF07, BF12, BF13, and BF14) and were ordered according to their molecular size. The genetic similarity between samples was calculated by the Jaccard index and a dendrogram was constructed using a cluster analysis of unweighted pair group method using arithmetic averages (UPGMA). Of the primers tested, 5 (out of 60) RAPD primers were selected for their reproducibility and high polymorphism. A total of 49 polymorphic RAPD bands were detected out of 252 bands. The genetic similarity analysis demonstrates an extensive genetic variability between the tested clones and the dendrogram depicts the genetic relationships among the clones, suggesting a geographic relationship. The results indicate that the RAPD markers permitted the identification of the assayed clones, although they are derived from the same geographic origin.


Subject(s)
Polymerase Chain Reaction/methods , Random Amplified Polymorphic DNA Technique/methods , Sequoia/genetics , Genotype , Sequoia/classification
19.
Rev. méd. Chile ; 136(12): 1542-1551, dic. 2008. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-508907

ABSTRACT

Background: Mental retardation or intellectual disability affects 2 percent ofthe general population, but in 60 percent to 70 percent of cases the real cause ofthis retardation is not known. An early etiologic diagnosis of intellectual disability can lead to opportunities for improved educational interventions, reinforcing weak aáreas and providing a genetic counseling to the family Aim: To search genetic diseases underíying intellectual disabilities of children attending a special education school. Material and methods: A clinical geneticist performed the history and physical examination in one hundred and three students aged between 5 and 24 years (51 males). A blood sample was obtained in 92 of them for a genetic screening that included a standard karyotype, fragile X molecular genetic testing and search for inborn errors of metabolism by tándem mass spectrometry. Results: This approach yielded an etiological diagnosis in as much as 29 patients. Three percent of them had a fragile X syndrome. Inborn errors of metabolism were not detected. Conclusions: This type of screening should be done always in children with intellectual disability to establish an etiological diagnosis.


Subject(s)
Adolescent , Child , Child, Preschool , Female , Humans , Male , Young Adult , Cytogenetic Analysis/methods , Genetic Testing/methods , Intellectual Disability/genetics , Mutation/genetics , Education, Special , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Karyotyping , Severity of Illness Index , Young Adult
20.
Appl Environ Microbiol ; 74(5): 1412-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18192424

ABSTRACT

The aim of this study was to assess the occurrence of mutualistic interactions between the fungus Trichoderma harzianum and two wheat genotypes, Triticum aestivum cv. Talhuén and T. turgidum subsp. durum cv. Alifén, and the extent to which water deficit affected these interactions. Two wheat genotypes were cultivated in the presence or absence of T. harzianum and in the presence or absence of water deficit. T. harzianum was in turn cultivated in the presence or absence of wheat plants and in the presence or absence of water deficit. To evaluate the plant-fungus interactions, the root volume, dry biomass, and fecundity of wheat were determined, as was the population growth rate of the fungus. Trichoderma harzianum exerted a positive effect only on plants subjected to water deficit. The population growth rate of T. harzianum was negative in the absence of wheat plants and reached its highest level in the presence of plants under conditions of water deficit. These results confirm the occurrence of a mutualistic interaction between wheat and T. harzianum and show that it is asymmetric and context dependent.


Subject(s)
Plant Roots/microbiology , Symbiosis , Trichoderma/growth & development , Triticum/growth & development , Water/metabolism , Analysis of Variance , Benzoxazines/pharmacology , Biomass , Dose-Response Relationship, Drug , Fertility/physiology , Genotype , Population Dynamics , Trichoderma/drug effects , Triticum/genetics , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...