Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 216(Pt 4): 114773, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36379238

ABSTRACT

Herein electrochemical oxidation (EO) is proposed as a novel path to treat the process water obtained from hydrothermal carbonization of olive tree pruning. The aim of this work is to analyze the organic matter removal achieved by the treatment along with the identification of the chemical species formed after the electro-oxidation process at different experimental conditions. Three different tests were performed in a boron doped diamond cell, using Na2SO4 and NaCl as supporting electrolytes to compare the results obtained with the raw process water. The organic matter removal was evaluated by means of total organic carbon and chemical oxygen demand, while Gas Chromatography Mass Spectrometry was used to determine the chemical species present before and after the treatment. The addition of a promoter considerably increased the organic matter removal. In fact, the experiments performed using supporting electrolytes showed the best results in terms of organic matter removal compared to the control experiment (30-40% vs. 17%); This reduction agrees with the volatile fatty acids' measurements. Almost all the chemical species identified in the different feedstocks were partially or totally removed after the EO treatment depending on the experimental conditions. The specific energy consumption and the cost calculated for the treatment is highly dependent on the time of electro-oxidation and the supporting electrolyte used, obtaining values from 1 to 45 €/kg CODremoved. All in all, this work suggests an interesting path towards a further utilization of process water from hydrothermal carbonization processes.


Subject(s)
Water Pollutants, Chemical , Water , Water Pollutants, Chemical/analysis , Electrodes , Diamond , Oxidation-Reduction , Electrolytes/chemistry
2.
Waste Manag ; 124: 224-234, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33631447

ABSTRACT

In this work the management of a waste called off-specification compost (OSC) was proposed via hydrothermal carbonization (HTC). The composition of this residue makes it not suitable for agronomic purposes because of the Spanish regulation requirements. Therefore, a way of management and/or valorisation needs to be found. The energy recovery through co-HTC with olive tree pruning (OTP) was evaluated. Blending of OSC with lignocellulosic biomass allows to obtain a coal-like product with physicochemical properties similar to those of a lignite, characterised by its high carbon content. Blends of 25, 50 and 75% of OSC with OTP were analysed. The individual OSC does not present good parameters for being used as solid fuel based on its chemical composition, however, the blend of 75% of biomass with 25% of OSC does. With a higher heating value of 26.19 MJ/kg, this blend shows the best energy yield and energy densification ratio. Thermogravimetric and kinetic analysis reveal that as biomass content in the blend increases, the more the hydrochar behaves as a solid fuel, therefore OSC can be used for energy purposes while its current use of landfill disposal can be reduced.


Subject(s)
Composting , Olea , Biomass , Carbon , Kinetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...