Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37106848

ABSTRACT

Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.

2.
Emerg Infect Dis ; 10(3): 438-46, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15109410

ABSTRACT

We analyzed the main karyologic changes that have occurred during the dispersion of Triatoma infestans, the main vector of Chagas disease. We identified two allopatric groups, named Andean and non-Andean. The Andean specimens present C-heterochromatic blocks in most of their 22 chromosomes, whereas non-Andean specimens have only 4-7 autosomes with C-banding. These heterochromatin differences are the likely cause of a striking DNA content variation (approximately 30%) between Andean and non-Andean insects. Our study, together with previous historical and genetic data, suggests that T. infestans was originally a sylvatic species, with large quantities of DNA and heterochromatin, inhabiting the Andean region of Bolivia. However, the spread of domestic T. infestans throughout the non-Andean regions only involved insects with an important reduction of heterochromatin and DNA amounts. We propose that heterochromatin and DNA variation mainly reflected adaptive genomic changes that contribute to the ability of T. infestans to survive, reproduce, and disperse in different environments.


Subject(s)
Triatoma/genetics , Animals , Chagas Disease/genetics , Disease Vectors/classification , Female , Flow Cytometry , Male , South America , Triatoma/classification
3.
Infect Genet Evol ; 2(1): 47-56, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12798000

ABSTRACT

The genus Panstrongylus includes 14 species widely distributed from Mexico to Argentina, some of them with great epidemiological significance as vectors of Chagas disease. We study the karyotype and the male meiotic process of Panstrongylus chinai, P. geniculatus, P. herreri, P. lignarius, P. megistus, P. rufotuberculatus and P. tupynambai. All species present the same sex mechanism (X(1)X(2)Y in males and X(1)X(1)X(2)X(2) in females) and they also have 20 autosomes, with the exception of P. megistus that only presents 18 autosomes. The analysis of C-banding patterns and meiotic chromosome behaviour show a great level of variability allowing the identification of three clearly differentiated groups. In the first group, we only include P. megistus because of its unusual number of autosomes. The second group includes P. chinai, P. herreri, P. lignarius and P. rufotuberculatus. Their autosomes present terminal heterochromatic regions that appear scattered throughout the nucleus and associated with the sex chromosomes. Actually, P. herreri and P. lignarius can be considered cytogenetically identical. Our results are in agreement with morphological, ecological and molecular data indicating that they should be regarded as the same species. The third group only includes P. tupynambai that shows autosomes without C-positive regions. Panstrongylus geniculatus shares characters will all the three groups. Its karyotypic features are extremely polymorphic depending on their geographic origin. Some populations do not show any heterochromatic regions, while others exhibit few or several heterochromatic blocks. The chromosomal variability observed, together with its wide distribution and phenetic variability, suggest that P. geniculatus is a species complex comprising at least two distinct species. Considering the entire subfamily, the level of cytogenetic variation in Panstrongylus is lower than that observed in Triatoma but considerably more than that of Rhodnius, which is a very homogenous genus in terms of chromosome appearance and behaviour. This would endorse the closer relationship between Panstrongylus and Triatoma, and their divergence from Rhodnius, in accordance with current tribal classification.


Subject(s)
Chagas Disease/transmission , Chromosomes/genetics , Evolution, Molecular , Insect Vectors/genetics , Panstrongylus/genetics , Animals , Cytogenetics , Female , Karyotyping , Male , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...