Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 319: 115725, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35863305

ABSTRACT

In recent years, acoustic pollution caused by noise has considerably increased in many countries. Particularly in Spain, the noisiest country in Europe. It is sometimes difficult to predict the noise levels that a new installation or an expansion of industrial equipment will cause in the surroundings. This work introduces a new methodology for the prediction, evaluation, and analysis of industrial noise sources, as well as a novel tool for predicting and categorizing outdoor noise from its measurement at their sources. A Wastewater Treatment Plant (WWTP) has been used to demonstrate the applicability and validity of this methodology. The continuous level of acoustic pressure equivalent has been measured in different points of the plant using an integrating sound level meter. From these values, noise maps have been built to obtain detailed information of the industrial noise generated in the installation. Also, the typical frequency patterns of each type of source have been used for the calculation of source noise apportionments. To achieve this objective, several noise sources have been selected to provide information about their contribution to the industrial noise in the WWTP surrounding area. Finally, predictions have been validated using actual measurements. This methodology is a useful tool to predict personal exposure to noise and the impact on the environment. This information can be used, in particular, to propose mitigation actions.


Subject(s)
Noise , Water Purification , Environmental Pollution , Europe , Industry
2.
Environ Pollut ; 266(Pt 3): 115279, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805680

ABSTRACT

Air quality management is underpinned by continuous measurements of concentrations of target air pollutants in monitoring stations. Although many approaches for optimizing the number and location of air quality monitoring stations are described in the literature, these are usually focused on dense networks. However, there are small and medium-size urban areas that only require one monitoring station but also suffer from severe air pollution. Given that target pollutants are usually measured at the same sampling points; it is necessary to develop a methodology to determine the optimal location of the single station. In this paper, such a methodology is proposed based on maximizing an objective function, that balances between different pollutants measured in the network. The methodology is applied to a set of data available for the city of Cartagena, in southeast Spain. A sensitivity analysis reveals that 2 small areas of the studied city account for 80% of the optimal potential locations, which makes them ideal candidates for setting up the monitoring station. The methodology is easy to implement, robust and supports the decision-making process regarding the siting of fixed sampling sites.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring , Spain
3.
J Environ Manage ; 91(12): 2754-62, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20810207

ABSTRACT

This paper describes a novel methodology for evaluating the extent to which petrol stations affect their surroundings. The method is based on the fact that the ratio of the concentrations of aliphatic and aromatic hydrocarbon pollutants in the air of the petrol stations and their surroundings (basically determined by vapor emissions from unburned gasoline) differs from the ratio found in urban air, which is mainly influenced by traffic emissions. Bearing this in mind, the spatial limit of influence of petrol stations in any direction would be the first point, moving away from the station, where the ratio becomes equal to the urban background ratio. Application of the methodology involves multipoint measuring campaigns of the air at the studied petrol station and built-up area in general and processing the data with software capable of providing isoconcentration contours. The procedure should help local authorities in terms of land management, so that a "belt" can be established around petrol stations where housing or vulnerable populations and activities such as those in schools, hospitals and community centers should be restricted.


Subject(s)
Air Pollutants/analysis , Hydrocarbons, Aromatic/analysis , Gasoline , Spain , Temperature , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...