Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 43(23): 8049-80, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-24983767

ABSTRACT

Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector.

2.
Microb Ecol ; 55(4): 626-39, 2008 May.
Article in English | MEDLINE | ID: mdl-17687593

ABSTRACT

Despite their ubiquitous distribution in tectonically active coastal zones, shallow water hydrothermal vents have been less investigated than deep-sea vents. In the present study, we investigated the role of viral control and fluid emissions on prokaryote abundance, diversity, and community structure (total Archaea, total Bacteria, and sulphate-reducing bacteria) in waters and sediments surrounding the caldera of four different shallow-water hydrothermal vents (three located in the Mediterranean Sea and one in the Pacific Ocean). All vents, independent of their location, generally displayed a significant decrease of benthic prokaryote abundance, as well as its viable fraction, with increasing distance from the vent. Prokaryote assemblages were always dominated by Bacteria. Benthic Archaea accounted for 23-33% of total prokaryote abundance in the Mediterranean Sea and from 13 to 29% in the Pacific Ocean, whereas in the water column they accounted for 25-38%. The highest benthic bacterial ribotype richness was observed in close proximity of the vents (i.e., at 10-cm distance from the emissions), indicating that vent fluids might influence bacterial diversity in surrounding sediments. Virioplankton and viriobenthos abundances were low compared to other marine systems, suggesting that temperature and physical-chemical conditions might influence viral survival in these vent systems. We thus hypothesize that the high bacterial diversity observed in close proximity of the vents is related with the highly variable vent emissions, which could favor the coexistence of several prokaryotic species.


Subject(s)
Archaea/growth & development , Bacteria/growth & development , Biodiversity , Viruses/growth & development , Water Microbiology , Archaea/genetics , Bacteria/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Ecosystem , Geologic Sediments/microbiology , In Situ Hybridization, Fluorescence , Mediterranean Sea , Pacific Ocean , Polymorphism, Restriction Fragment Length , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...