Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Neuron ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39013468

ABSTRACT

Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement it by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.

2.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979189

ABSTRACT

Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.

3.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37662298

ABSTRACT

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

4.
Neuron ; 111(15): 2432-2447.e13, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37295419

ABSTRACT

The brain can combine auditory and visual information to localize objects. However, the cortical substrates underlying audiovisual integration remain uncertain. Here, we show that mouse frontal cortex combines auditory and visual evidence; that this combination is additive, mirroring behavior; and that it evolves with learning. We trained mice in an audiovisual localization task. Inactivating frontal cortex impaired responses to either sensory modality, while inactivating visual or parietal cortex affected only visual stimuli. Recordings from >14,000 neurons indicated that after task learning, activity in the anterior part of frontal area MOs (secondary motor cortex) additively encodes visual and auditory signals, consistent with the mice's behavioral strategy. An accumulator model applied to these sensory representations reproduced the observed choices and reaction times. These results suggest that frontal cortex adapts through learning to combine evidence across sensory cortices, providing a signal that is transformed into a binary decision by a downstream accumulator.


Subject(s)
Auditory Cortex , Visual Perception , Animals , Mice , Visual Perception/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology , Photic Stimulation/methods , Frontal Lobe , Auditory Cortex/physiology
5.
Nat Neurosci ; 26(2): 251-258, 2023 02.
Article in English | MEDLINE | ID: mdl-36624279

ABSTRACT

Sensory cortices can be affected by stimuli of multiple modalities and are thus increasingly thought to be multisensory. For instance, primary visual cortex (V1) is influenced not only by images but also by sounds. Here we show that the activity evoked by sounds in V1, measured with Neuropixels probes, is stereotyped across neurons and even across mice. It is independent of projections from auditory cortex and resembles activity evoked in the hippocampal formation, which receives little direct auditory input. Its low-dimensional nature starkly contrasts the high-dimensional code that V1 uses to represent images. Furthermore, this sound-evoked activity can be precisely predicted by small body movements that are elicited by each sound and are stereotyped across trials and mice. Thus, neural activity that is apparently multisensory may simply arise from low-dimensional signals associated with internal state and behavior.


Subject(s)
Auditory Cortex , Visual Cortex , Mice , Animals , Acoustic Stimulation , Auditory Cortex/physiology , Visual Cortex/physiology , Neurons/physiology , Visual Perception/physiology , Auditory Perception/physiology
6.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36575007

Subject(s)
Writing
7.
Cell Rep ; 41(3): 111487, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261004

ABSTRACT

The medial prefrontal cortex (mPFC) is necessary for executing many learned associations between stimuli and movement. It is unclear, however, how activity in the mPFC evolves across learning, and how this activity correlates with sensory stimuli and the learned movements they evoke. To address these questions, we record cortical activity with widefield calcium imaging while mice learned to associate a visual stimulus with a forelimb movement. After learning, the mPFC shows stimulus-evoked activity both during task performance and during passive viewing, when the stimulus evokes no action. This stimulus-evoked activity closely tracks behavioral performance across training, with both exhibiting a marked increase between days when mice first learn the task, followed by a steady increase with further training. Electrophysiological recordings localized this activity to the secondary motor and anterior cingulate cortex. We conclude that learning a visuomotor task promotes a route for visual information to reach the prefrontal cortex.


Subject(s)
Calcium , Learning , Animals , Mice , Cytoplasm , Movement , Prefrontal Cortex
9.
J Neurosci Methods ; 381: 109705, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36096238

ABSTRACT

The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.


Subject(s)
Neurosciences , Rodentia , Animal Husbandry/methods , Animal Welfare , Animals , Food , Mice
11.
Neuron ; 110(18): 2961-2969.e5, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35963238

ABSTRACT

Parietal cortex is implicated in a variety of behavioral processes, but it is unknown whether and how its individual neurons participate in multiple tasks. We trained head-fixed mice to perform two visual decision tasks involving a steering wheel or a virtual T-maze and recorded from the same parietal neurons during these two tasks. Neurons that were active during the T-maze task were typically inactive during the steering-wheel task and vice versa. Recording from the same neurons in the same apparatus without task stimuli yielded the same specificity as in the task, suggesting that task specificity depends on physical context. To confirm this, we trained some mice in a third task combining the steering wheel context with the visual environment of the T-maze. This hybrid task engaged the same neurons as those engaged in the steering-wheel task. Thus, participation by neurons in mouse parietal cortex is task specific, and this specificity is determined by physical context.


Subject(s)
Neurons , Parietal Lobe , Animals , Macaca mulatta , Mice , Neurons/physiology , Parietal Lobe/physiology
12.
Nature ; 607(7918): 330-338, 2022 07.
Article in English | MEDLINE | ID: mdl-35794483

ABSTRACT

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes1-6, but it is not known whether these subtypes have correspondingly diverse patterns of activity in the living brain. Here we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, which are organized by a single factor: position along the main axis of transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined transcriptomic clusters3. Responses to visual stimuli differed significantly only between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in the other subclasses predominantly excited. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro7, and expressed more inhibitory cholinergic receptors. Subtypes that fired more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 subtypes shape state-dependent cortical processing.


Subject(s)
Interneurons , Neural Inhibition , Transcriptome , Visual Cortex , Animals , Arousal , Axons/physiology , Calcium/analysis , Interneurons/physiology , Mice , Neural Inhibition/genetics , Receptors, Cholinergic , Transcriptome/genetics , Visual Cortex/cytology , Visual Cortex/metabolism , Visual Cortex/physiology
13.
Neuron ; 110(10): 1631-1640.e4, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35278361

ABSTRACT

Functional ultrasound imaging (fUSI) is an appealing method for measuring blood flow and thus infer brain activity, but it relies on the physiology of neurovascular coupling and requires extensive signal processing. To establish to what degree fUSI trial-by-trial signals reflect neural activity, we performed simultaneous fUSI and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow (<0.3 Hz) fluctuations in the local firing rate and were closely predicted by the smoothed firing rate of local neurons, particularly putative inhibitory neurons. The optimal smoothing filter had a width of ∼3 s, matched the hemodynamic response function of awake mice, was invariant across mice and stimulus conditions, and was similar in the cortex and hippocampus. fUSI signals also matched neural firing spatially: firing rates were as highly correlated across hemispheres as fUSI signals. Thus, blood flow measured by ultrasound bears a simple and accurate relationship to neuronal firing.


Subject(s)
Hemodynamics , Neurovascular Coupling , Animals , Cerebral Cortex , Hemodynamics/physiology , Mice , Neurons/physiology , Ultrasonography/methods
14.
J Neurosci ; 41(34): 7197-7205, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34253628

ABSTRACT

The striatum plays critical roles in visually-guided decision-making and receives dense axonal projections from midbrain dopamine neurons. However, the roles of striatal dopamine in visual decision-making are poorly understood. We trained male and female mice to perform a visual decision task with asymmetric reward payoff, and we recorded the activity of dopamine axons innervating striatum. Dopamine axons in the dorsomedial striatum (DMS) responded to contralateral visual stimuli and contralateral rewarded actions. Neural responses to contralateral stimuli could not be explained by orienting behavior such as eye movements. Moreover, these contralateral stimulus responses persisted in sessions where the animals were instructed to not move to obtain reward, further indicating that these signals are stimulus-related. Lastly, we show that DMS dopamine signals were qualitatively different from dopamine signals in the ventral striatum (VS), which responded to both ipsilateral and contralateral stimuli, conforming to canonical prediction error signaling under sensory uncertainty. Thus, during visual decisions, DMS dopamine encodes visual stimuli and rewarded actions in a lateralized fashion, and could facilitate associations between specific visual stimuli and actions.SIGNIFICANCE STATEMENT While the striatum is central to goal-directed behavior, the precise roles of its rich dopaminergic innervation in perceptual decision-making are poorly understood. We found that in a visual decision task, dopamine axons in the dorsomedial striatum (DMS) signaled stimuli presented contralaterally to the recorded hemisphere, as well as the onset of rewarded actions. Stimulus-evoked signals persisted in a no-movement task variant. We distinguish the patterns of these signals from those in the ventral striatum (VS). Our results contribute to the characterization of region-specific dopaminergic signaling in the striatum and highlight a role in stimulus-action association learning.


Subject(s)
Association Learning/physiology , Axons/physiology , Choice Behavior/physiology , Corpus Striatum/physiology , Dopaminergic Neurons/physiology , Photic Stimulation , Reward , Animals , Corpus Striatum/cytology , Dominance, Cerebral , Dopamine/physiology , Eye Movements/physiology , Female , Male , Mice , Mice, Inbred C57BL , Nerve Fibers/ultrastructure
15.
Elife ; 102021 07 30.
Article in English | MEDLINE | ID: mdl-34328419

ABSTRACT

Correlates of sensory stimuli and motor actions are found in multiple cortical areas, but such correlates do not indicate whether these areas are causally relevant to task performance. We trained mice to discriminate visual contrast and report their decision by steering a wheel. Widefield calcium imaging and Neuropixels recordings in cortex revealed stimulus-related activity in visual (VIS) and frontal (MOs) areas, and widespread movement-related activity across the whole dorsal cortex. Optogenetic inactivation biased choices only when targeted at VIS and MOs,proportionally to each site's encoding of the visual stimulus, and at times corresponding to peak stimulus decoding. A neurometric model based on summing and subtracting activity in VIS and MOs successfully described behavioral performance and predicted the effect of optogenetic inactivation. Thus, sensory signals localized in visual and frontal cortex play a causal role in task performance, while widespread dorsal cortical signals correlating with movement reflect processes that do not play a causal role.


Subject(s)
Optogenetics/methods , Visual Cortex/physiology , Visual Perception , Animals , Animals, Genetically Modified , Cell Line , Choice Behavior , Decision Making , Humans , Male , Mice , Neurons/physiology , Visual Cortex/anatomy & histology
16.
Elife ; 102021 05 20.
Article in English | MEDLINE | ID: mdl-34011433

ABSTRACT

Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.


In science, it is of vital importance that multiple studies corroborate the same result. Researchers therefore need to know all the details of previous experiments in order to implement the procedures as exactly as possible. However, this is becoming a major problem in neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most experiments are never replicated by other laboratories. Mice are increasingly being used to study the neural mechanisms of decision making, taking advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet, the lack of standardized behavioral assays is leading to inconsistent results between laboratories. This makes it challenging to carry out large-scale collaborations which have led to massive breakthroughs in other fields such as physics and genetics. To help make these studies more reproducible, the International Brain Laboratory (a collaborative research group) et al. developed a standardized approach for investigating decision making in mice that incorporates every step of the process; from the training protocol to the software used to analyze the data. In the experiment, mice were shown images with different contrast and had to indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a drop of sugar water for every correction decision. When the image contrast was high, mice could rely on their vision. However, when the image contrast was very low or zero, they needed to consider the information of previous trials and choose the side that had recently appeared more frequently. This method was used to train 140 mice in seven laboratories from three different countries. The results showed that learning speed was different across mice and laboratories, but once training was complete the mice behaved consistently, relying on visual stimuli or experiences to guide their choices in a similar way. These results show that complex behaviors in mice can be reproduced across multiple laboratories, providing an unprecedented dataset and open-access tools for studying decision making. This work could serve as a foundation for other groups, paving the way to a more collaborative approach in the field of neuroscience that could help to tackle complex research challenges.


Subject(s)
Behavior, Animal , Biomedical Research/standards , Decision Making , Neurosciences/standards , Animals , Cues , Female , Learning , Male , Mice, Inbred C57BL , Models, Animal , Observer Variation , Photic Stimulation , Reproducibility of Results , Time Factors , Visual Perception
17.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: mdl-33859006

ABSTRACT

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.


Subject(s)
Brain/physiology , Electrodes, Implanted , Electrophysiology/instrumentation , Microelectrodes , Neurons/physiology , Action Potentials , Algorithms , Animals , Electrophysiology/methods , Male , Mice , Mice, Inbred C57BL , Miniaturization , Rats
18.
Elife ; 102021 02 04.
Article in English | MEDLINE | ID: mdl-33538692

ABSTRACT

During navigation, the visual responses of neurons in mouse primary visual cortex (V1) are modulated by the animal's spatial position. Here we show that this spatial modulation is similarly present across multiple higher visual areas but negligible in the main thalamic pathway into V1. Similar to hippocampus, spatial modulation in visual cortex strengthens with experience and with active behavior. Active navigation in a familiar environment, therefore, enhances the spatial modulation of visual signals starting in the cortex.


Subject(s)
Primary Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Mice , Neurons/physiology
19.
Nature ; 591(7850): 420-425, 2021 03.
Article in English | MEDLINE | ID: mdl-33473213

ABSTRACT

The cortex projects to the dorsal striatum topographically1,2 to regulate behaviour3-5, but spiking activity in the two structures has previously been reported to have markedly different relations to sensorimotor events6-9. Here we show that the relationship between activity in the cortex and striatum is spatiotemporally precise, topographic, causal and invariant to behaviour. We simultaneously recorded activity across large regions of the cortex and across the width of the dorsal striatum in mice that performed a visually guided task. Striatal activity followed a mediolateral gradient in which behavioural correlates progressed from visual cue to response movement to reward licking. The summed activity in each part of the striatum closely and specifically mirrored activity in topographically associated cortical regions, regardless of task engagement. This relationship held for medium spiny neurons and fast-spiking interneurons, whereas the activity of tonically active neurons differed from cortical activity with stereotypical responses to sensory or reward events. Inactivation of the visual cortex abolished striatal responses to visual stimuli, supporting a causal role of cortical inputs in driving the striatum. Striatal visual responses were larger in trained mice than untrained mice, with no corresponding change in overall activity in the visual cortex. Striatal activity therefore reflects a consistent, causal and scalable topographical mapping of cortical activity.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Corpus Striatum/cytology , Corpus Striatum/physiology , Animals , Female , Interneurons/metabolism , Learning , Male , Mice , Neurons/metabolism , Photic Stimulation , Psychomotor Performance , Reward , Sensorimotor Cortex/physiology , Visual Cortex/physiology
20.
Nature ; 588(7839): 648-652, 2020 12.
Article in English | MEDLINE | ID: mdl-33177719

ABSTRACT

The selectivity of neuronal responses arises from the architecture of excitatory and inhibitory connections. In the primary visual cortex, the selectivity of a neuron in layer 2/3 for stimulus orientation and direction is thought to arise from intracortical inputs that are similarly selective1-8. However, the excitatory inputs of a neuron can have diverse stimulus preferences1-4,6,7,9, and inhibitory inputs can be promiscuous10 and unselective11. Here we show that the excitatory and inhibitory intracortical connections to a layer 2/3 neuron accord with its selectivity by obeying precise spatial patterns. We used rabies tracing1,12 to label and functionally image the excitatory and inhibitory inputs to individual pyramidal neurons of layer 2/3 of the mouse visual cortex. Presynaptic excitatory neurons spanned layers 2/3 and 4 and were distributed coaxial to the preferred orientation of the postsynaptic neuron, favouring the region opposite to its preferred direction. By contrast, presynaptic inhibitory neurons resided within layer 2/3 and favoured locations near the postsynaptic neuron and ahead of its preferred direction. The direction selectivity of a postsynaptic neuron was unrelated to the selectivity of presynaptic neurons, but correlated with the spatial displacement between excitatory and inhibitory presynaptic ensembles. Similar asymmetric connectivity establishes direction selectivity in the retina13-17. This suggests that this circuit motif might be canonical in sensory processing.


Subject(s)
Neural Pathways , Pyramidal Cells/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Animals , Excitatory Postsynaptic Potentials , Female , Inhibitory Postsynaptic Potentials , Male , Mice , Neural Inhibition , Neuroanatomical Tract-Tracing Techniques , Presynaptic Terminals/physiology , Rabies virus/metabolism , Receptors, Virus/metabolism , Retina/cytology , Retina/physiology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...