Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 293, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997154

ABSTRACT

Rexinoids are ligands which activate retinoid X receptors (RXRs), regulating transcription of genes involved in cancer-relevant processes. Rexinoids have anti-neoplastic activity in multiple preclinical studies. Bexarotene, used to treat cutaneous T cell lymphoma, is the only FDA-approved rexinoid. Bexarotene has also been evaluated in clinical trials for lung and metastatic breast cancer, wherein subsets of patients responded despite advanced disease. By modifying structures of known rexinoids, we can improve potency and toxicity. We previously screened a series of novel rexinoids and selected V-125 as the lead based on performance in optimized in vitro assays. To validate our screening paradigm, we tested V-125 in clinically relevant mouse models of breast and lung cancer. V-125 significantly (p < 0.001) increased time to tumor development in the MMTV-Neu breast cancer model. Treatment of established mammary tumors with V-125 significantly (p < 0.05) increased overall survival. In the A/J lung cancer model, V-125 significantly (p < 0.01) decreased number, size, and burden of lung tumors. Although bexarotene elevated triglycerides and cholesterol in these models, V-125 demonstrated an improved safety profile. These studies provide evidence that our screening paradigm predicts novel rexinoid efficacy and suggest that V-125 could be developed into a new cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Retinoid X Receptors/agonists , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Transgenic , Retinoid X Receptors/metabolism , Signal Transduction , Time Factors , Tumor Burden/drug effects
2.
Cancers (Basel) ; 13(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34638488

ABSTRACT

(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions. Bexarotene, the only FDA-approved RXR agonist, is still used to treat cutaneous T-cell lymphoma. (2) Methods: To test the immunomodulatory and anti-tumor effects of MSU42011, a new RXR agonist, we used two different immunocompetent murine models (MMTV-Neu mice, a HER2 positive model of breast cancer and the A/J mouse model, in which vinyl carbamate is used to initiate lung tumorigenesis) and an immunodeficient xenograft lung cancer model. (3) Results: Treatment of established tumors in immunocompetent models of HER2-positive breast cancer and Kras-driven lung cancer with MSU42011 significantly decreased the tumor burden and increased the ratio of CD8/CD4, CD25 T cells, which correlates with enhanced anti-tumor efficacy. Moreover, the combination of MSU42011 and immunotherapy (anti-PDL1 and anti-PD1 antibodies) significantly (p < 0.05) reduced tumor size vs. individual treatments. However, MSU42011 was ineffective in an athymic human A549 lung cancer xenograft model, supporting an immunomodulatory mechanism of action. (4) Conclusions: Collectively, these data suggest that the RXR agonist MSU42011 can be used to modulate the tumor microenvironment in breast and lung cancer.

3.
Sci Rep ; 11(1): 1234, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441637

ABSTRACT

Mutations in BRCA genes are the leading cause of hereditary breast cancer. Current options to prevent cancer in these high-risk patients, such as anti-estrogen drugs and radical mastectomy, are limited by lack of efficacy, undesirable toxicities, or physical and emotional challenges. We have previously shown that PARP inhibitors can significantly delay tumor development in BRCA1-deficient mice. Here, we fabricated the PARP inhibitor talazoparib (TLZ) into spacer implants (InCeT-TLZ) for localized and sustained delivery. We hypothesized that this novel formulation will provide an effective chemopreventive strategy with minimal toxicity. TLZ was released gradually over 30 days as implants degraded. InCeT-TLZ significantly decreased proliferation and increased DNA damage in the mammary glands of BRCA1-deficient mice. Notably, the number of mice that developed hyperplasia in the mammary glands was significantly lower with InCeT-TLZ treatment compared to the control group. Meanwhile, InCeT-TLZ was also better tolerated than oral TLZ, without loss of body weight or anemia. This study provides proof of concept for a novel and safe chemopreventive strategy using localized delivery of a PARP inhibitor for high-risk individuals. Future studies will directly evaluate the effects of InCeT-TLZ for preventing tumor development.


Subject(s)
BRCA1 Protein/deficiency , Hyperplasia/metabolism , Hyperplasia/prevention & control , Mammary Glands, Animal/drug effects , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , BRCA1 Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Female , Mammary Glands, Animal/metabolism , Mice , Mutation/drug effects
4.
Sci Rep ; 10(1): 22244, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335263

ABSTRACT

Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia. Here, we used a previously validated screening paradigm to evaluate 23 novel rexinoids for biomarkers related to efficacy and safety. These biomarkers include suppression of inducible nitric oxide synthase (iNOS) and induction of sterol regulatory element-binding protein (SREBP). Because of its potent iNOS suppression, low SREBP induction, and activation of RXR, MSU-42011 was selected as our lead compound. We next used MSU-42011 to treat established tumors in a clinically relevant Kras-driven mouse model of lung cancer. KRAS is one of the most common driver mutations in human lung cancer and correlates with aggressive disease progression and poor patient prognosis. Ultrasound imaging was used to detect and monitor tumor development and growth over time in the lungs of the A/J mice. MSU-42011 markedly decreased the tumor number, size, and histopathology of lung tumors compared to the control and bexarotene groups. Histological sections of lung tumors in mice treated with MSU-42011 exhibited reduced cell density and fewer actively proliferating cells compared to the control and bexarotene-treated tumors. Although bexarotene significantly (p < 0.01) elevated plasma triglycerides and cholesterol, treatment with MSU-42011 did not increase these biomarkers, demonstrating a more favorable toxicity profile in vivo. The combination of MSU-42011 and carboplatin and paclitaxel reduced macrophages in the lung and increased activation markers of CD8+T cells compared to the control groups. Our results validate our screening paradigm for in vitro testing of novel rexinoids and demonstrate the potential for MSU-42011 to be developed for the treatment of KRAS-driven lung cancer.


Subject(s)
Anticarcinogenic Agents/pharmacology , Carcinogens , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/pharmacology , Animals , Anticarcinogenic Agents/chemistry , Apoptosis/drug effects , Bexarotene/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Immunohistochemistry , Immunomodulation/drug effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Mice , Molecular Structure , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Tetrahydronaphthalenes/chemistry , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
5.
NPJ Breast Cancer ; 5: 39, 2019.
Article in English | MEDLINE | ID: mdl-31700995

ABSTRACT

Despite numerous therapeutic advances in the past decade, breast cancer is expected to cause over 42,000 deaths in the United States in 2019. Breast cancer had been considered an immunologically silent tumor; however recent findings suggest that immune cells play important roles in tumor growth even in the breast. Retinoid X receptors (RXRs) are a subclass of nuclear receptors that act as ligand-dependent transcription factors that regulate a variety of cellular processes including proliferation and differentiation; in addition, they are essential for macrophage biology. Rexinoids are synthetic molecules that bind and activate RXRs. Bexarotene is the only rexinoid approved by the FDA for the treatment of refractory cutaneous T-cell lymphoma. Other more-potent rexinoids have been synthesized, such as LG100268 (LG268). Here, we report that treatment with LG 268, but not bexarotene, decreased infiltration of myeloid-derived suppressor cells and CD206-expressing macrophages, increased the expression of PD-L1 by 50%, and increased the ratio of CD8/CD4, CD25 T cells, which correlates with increased cytotoxic activity of CD8 T cells in tumors of MMTV-Neu mice (a model of HER2-positive breast cancer). In the MMTV-PyMT murine model of triple negative breast cancer, LG268 treatment of established tumors prolonged survival, and in combination with anti-PD-L1 antibodies, significantly (p = 0.05) increased the infiltration of cytotoxic CD8 T cells and apoptosis. Collectively, these data suggest that the use of LG268, a RXR agonist, can improve response to immune checkpoint blockade in HER2+ or triple-negative breast cancer.

6.
Theranostics ; 9(21): 6224-6238, 2019.
Article in English | MEDLINE | ID: mdl-31534547

ABSTRACT

Two recently approved PARP inhibitors provide an important new therapeutic option for patients with BRCA-mutated metastatic breast cancer. PARP inhibitors significantly prolong progression-free survival in patients, but conventional oral delivery of PARP inhibitors is hindered by limited bioavailability and off-target toxicities, thus compromising the therapeutic benefits and quality of life for patients. Here, we developed a new delivery system, in which the PARP inhibitor Talazoparib is encapsulated in the bilayer of a nano-liposome, to overcome these limitations. Methods: Nano-Talazoparib (NanoTLZ) was characterized both in vitro and in vivo. The therapeutic efficacy and toxicity of Nano-Talazoparib (NanoTLZ) were evaluated in BRCA-deficient mice. The regulation of NanoTLZ on gene transcription and immunomodulation were further investigated in spontaneous BRCA-deficient tumors. Results: NanoTLZ significantly (p<0.05) prolonged the overall survival of BRCA-deficient mice compared to all of the other experimental groups, including saline control, empty nanoparticles, and free Talazoparib groups (oral and i.v.). Moreover, NanoTLZ was better tolerated than treatment with free Talazoparib, with no significant weight lost or alopecia as was observed with the free drug. After 5 doses, NanoTLZ altered the expression of over 140 genes and induced DNA damage, cell cycle arrest and inhibition of cell proliferation in the tumor. In addition, NanoTLZ favorably modulated immune cell populations in vivo and significantly (p<0.05) decreased the percentage of myeloid derived suppressor cells in both the tumor and spleen compared to control groups. Conclusions: Our results demonstrate that delivering nanoformulated Talazoparib not only enhances treatment efficacy but also reduces off-target toxicities in BRCA-deficient mice; the same potential is predicted for patients with BRCA-deficient breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Liposomes/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Nanoparticles/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Drug Compounding , Female , Humans , Immunomodulation , Mice , Phthalazines , Treatment Outcome
7.
Cancer Prev Res (Phila) ; 12(4): 211-224, 2019 04.
Article in English | MEDLINE | ID: mdl-30760500

ABSTRACT

Rexinoids, selective ligands for retinoid X receptors (RXR), have shown promise in preventing many types of cancer. However, the limited efficacy and undesirable lipidemic side-effects of the only clinically approved rexinoid, bexarotene, drive the search for new and better rexinoids. Here we report the evaluation of novel pyrimidinyl (Py) analogues of two known chemopreventive rexinoids, bexarotene (Bex) and LG100268 (LG268) in a new paradigm. We show that these novel derivatives were more effective agents than bexarotene for preventing lung carcinogenesis induced by a carcinogen. In addition, these new analogues have an improved safety profile. PyBex caused less elevation of plasma triglyceride levels than bexarotene, while PyLG268 reduced plasma cholesterol levels and hepatomegaly compared with LG100268. Notably, this new paradigm mechanistically emphasizes the immunomodulatory and anti-inflammatory activities of rexinoids. We reveal new immunomodulatory actions of the above rexinoids, especially their ability to diminish the percentage of macrophages and myeloid-derived suppressor cells in the lung and to redirect activation of M2 macrophages. The rexinoids also potently inhibit critical inflammatory mediators including IL6, IL1ß, CCL9, and nitric oxide synthase (iNOS) induced by lipopolysaccharide. Moreover, in vitro iNOS and SREBP (sterol regulatory element-binding protein) induction assays correlate with in vivo efficacy and toxicity, respectively. Our results not only report novel pyrimidine derivatives of existing rexinoids, but also describe a series of biological screening assays that will guide the synthesis of additional rexinoids. Further progress in rexinoid synthesis, potency, and safety should eventually lead to a clinically acceptable and useful new drug for patients with cancer.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , Tetrahydronaphthalenes/pharmacology , Animals , Apoptosis , Bexarotene/pharmacology , Cell Proliferation , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred A , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Cancer Prev Res (Phila) ; 11(3): 143-156, 2018 03.
Article in English | MEDLINE | ID: mdl-29246957

ABSTRACT

Breast cancer and lung cancer remain the top two leading causes of cancer-related deaths in women. Because of limited success in reducing the high mortality of these diseases, new drugs and approaches are desperately needed. Cancer prevention is one such promising strategy that is effective in both preclinical and clinical studies. I-BET 762 is a new bromodomain inhibitor that reversibly targets BET (bromodomain and extraterminal) proteins and impairs their ability to bind to acetylated lysines on histones, thus interrupting downstream transcription. This inhibitor has anti-inflammatory effects and induces growth arrest in many cancers and is currently under clinical trials for treatment of cancer. However, few studies have investigated the chemopreventive effects of bromodomain inhibitors. Here, we found that I-BET 762 significantly delayed tumor development in preclinical breast and lung cancer mouse models. This drug not only induced growth arrest and downregulated c-Myc, pSTAT3, and pERK protein expression in tumor cells in vitro and in vivo but also altered immune populations in different organs. These results demonstrate the promising potential of using I-BET 762 for cancer prevention and suggest the striking effects of I-BET 762 are the result of targeting both tumor cells and the tumor microenvironment. Cancer Prev Res; 11(3); 143-56. ©2017 AACR.


Subject(s)
Benzodiazepines/therapeutic use , Chemoprevention/methods , Lung Neoplasms/prevention & control , Mammary Neoplasms, Experimental/prevention & control , A549 Cells , Animals , Female , Humans , Lung Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred Strains , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...