Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645241

ABSTRACT

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the spectral and temporal sensitivity of auditory cortical neurons support many aspects of flexible listening, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multi-unit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improved during task performance, and this improvement was driven by changes in firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improved and correlated with behavioral performance as animals learn to detect small AM depths during a multi-day perceptual training paradigm. Finally, we reveal that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the auditory cortex. Together, our results suggest that the auditory midbrain and thalamus contribute to flexible sound processing and perception over rapid and slow timescales.

2.
J Comp Neurol ; 531(14): 1459-1481, 2023 10.
Article in English | MEDLINE | ID: mdl-37477903

ABSTRACT

Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.


Subject(s)
Auditory Cortex , Auditory Pathways , Animals , Auditory Pathways/physiology , Gerbillinae , Axons , Neurons/metabolism , Auditory Cortex/physiology
3.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187685

ABSTRACT

Sensory perception is dynamic, quickly adapting to sudden shifts in environmental or behavioral context. Though decades of work have established that these dynamics are mediated by rapid fluctuations in sensory cortical activity, we have a limited understanding of the brain regions and pathways that orchestrate these changes. Neurons in the orbitofrontal cortex (OFC) encode contextual information, and recent data suggest that some of these signals are transmitted to sensory cortices. Whether and how these signals shape sensory encoding and perceptual sensitivity remains uncertain. Here, we asked whether the OFC mediates context-dependent changes in auditory cortical sensitivity and sound perception by monitoring and manipulating OFC activity in freely moving animals under two behavioral contexts: passive sound exposure and engagement in an amplitude modulation (AM) detection task. We found that the majority of OFC neurons, including the specific subset that innervate the auditory cortex, were strongly modulated by task engagement. Pharmacological inactivation of the OFC prevented rapid context-dependent changes in auditory cortical firing, and significantly impaired behavioral AM detection. Our findings suggest that contextual information from the OFC mediates rapid plasticity in the auditory cortex and facilitates the perception of behaviorally relevant sounds. Significance Statement: Sensory perception depends on the context in which stimuli are presented. For example, perception is enhanced when stimuli are informative, such as when they are important to solve a task. Perceptual enhancements result from an increase in the sensitivity of sensory cortical neurons; however, we do not fully understand how such changes are initiated in the brain. Here, we tested the role of the orbitofrontal cortex (OFC) in controlling auditory cortical sensitivity and sound perception. We found that OFC neurons change their activity when animals perform a sound detection task. Inactivating OFC impairs sound detection and prevents task-dependent increases in auditory cortical sensitivity. Our findings suggest that the OFC controls contextual modulations of the auditory cortex and sound perception.

4.
J Assoc Res Otolaryngol ; 23(2): 151-166, 2022 04.
Article in English | MEDLINE | ID: mdl-35235100

ABSTRACT

Distinguishing between regular and irregular heartbeats, conversing with speakers of different accents, and tuning a guitar-all rely on some form of auditory learning. What drives these experience-dependent changes? A growing body of evidence suggests an important role for non-sensory influences, including reward, task engagement, and social or linguistic context. This review is a collection of contributions that highlight how these non-sensory factors shape auditory plasticity and learning at the molecular, physiological, and behavioral level. We begin by presenting evidence that reward signals from the dopaminergic midbrain act on cortico-subcortical networks to shape sound-evoked responses of auditory cortical neurons, facilitate auditory category learning, and modulate the long-term storage of new words and their meanings. We then discuss the role of task engagement in auditory perceptual learning and suggest that plasticity in top-down cortical networks mediates learning-related improvements in auditory cortical and perceptual sensitivity. Finally, we present data that illustrates how social experience impacts sound-evoked activity in the auditory midbrain and forebrain and how the linguistic environment rapidly shapes speech perception. These findings, which are derived from both human and animal models, suggest that non-sensory influences are important regulators of auditory learning and plasticity and are often implemented by shared neural substrates. Application of these principles could improve clinical training strategies and inform the development of treatments that enhance auditory learning in individuals with communication disorders.


Subject(s)
Auditory Cortex , Neuronal Plasticity , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Neuronal Plasticity/physiology
6.
J Neurosci ; 39(42): 8347-8361, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31451577

ABSTRACT

Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , GABAergic Neurons/physiology , Hearing Loss/physiopathology , Inhibitory Postsynaptic Potentials/physiology , Learning/physiology , Acoustic Stimulation , Animals , Auditory Pathways/physiopathology , Female , Gerbillinae , Male
7.
J Neurosci ; 39(15): 2889-2902, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30755494

ABSTRACT

Skill learning is fundamental to the acquisition of many complex behaviors that emerge during development. For example, years of practice give rise to perceptual improvements that contribute to mature speech and language skills. While fully honed learning skills might be thought to offer an advantage during the juvenile period, the ability to learn actually continues to develop through childhood and adolescence, suggesting that the neural mechanisms that support skill learning are slow to mature. To address this issue, we asked whether the rate and magnitude of perceptual learning varies as a function of age as male and female gerbils trained on an auditory task. Adolescents displayed a slower rate of perceptual learning compared with their young and mature counterparts. We recorded auditory cortical neuron activity from a subset of adolescent and adult gerbils as they underwent perceptual training. While training enhanced the sensitivity of most adult units, the sensitivity of many adolescent units remained unchanged, or even declined across training days. Therefore, the average rate of cortical improvement was significantly slower in adolescents compared with adults. Both smaller differences between sound-evoked response magnitudes and greater trial-to-trial response fluctuations contributed to the poorer sensitivity of individual adolescent neurons. Together, these findings suggest that elevated sensory neural variability limits adolescent skill learning.SIGNIFICANCE STATEMENT The ability to learn new skills emerges gradually as children age. This prolonged development, often lasting well into adolescence, suggests that children, teens, and adults may rely on distinct neural strategies to improve their sensory and motor capabilities. Here, we found that practice-based improvement on a sound detection task is slower in adolescent gerbils than in younger or older animals. Neural recordings made during training revealed that practice enhanced the sound sensitivity of adult cortical neurons, but had a weaker effect in adolescents. This latter finding was partially explained by the fact that adolescent neural responses were more variable than in adults. Our results suggest that one mechanistic basis of adult-like skill learning is a reduction in neural response variability.


Subject(s)
Learning/physiology , Motor Skills/physiology , Acoustic Stimulation , Aging/psychology , Animals , Auditory Cortex/cytology , Auditory Cortex/physiology , Conditioning, Operant/physiology , Female , Gerbillinae , Male , Perception/physiology , Psychomotor Performance/physiology
8.
Proc Natl Acad Sci U S A ; 114(37): 9972-9977, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847938

ABSTRACT

Practice sharpens our perceptual judgments, a process known as perceptual learning. Although several brain regions and neural mechanisms have been proposed to support perceptual learning, formal tests of causality are lacking. Furthermore, the temporal relationship between neural and behavioral plasticity remains uncertain. To address these issues, we recorded the activity of auditory cortical neurons as gerbils trained on a sound detection task. Training led to improvements in cortical and behavioral sensitivity that were closely matched in terms of magnitude and time course. Surprisingly, the degree of neural improvement was behaviorally gated. During task performance, cortical improvements were large and predicted behavioral outcomes. In contrast, during nontask listening sessions, cortical improvements were weak and uncorrelated with perceptual performance. Targeted reduction of auditory cortical activity during training diminished perceptual learning while leaving psychometric performance largely unaffected. Collectively, our findings suggest that training facilitates perceptual learning by strengthening both bottom-up sensory encoding and top-down modulation of auditory cortex.


Subject(s)
Neuronal Plasticity/physiology , Somatosensory Cortex/physiology , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Gerbillinae/physiology , Learning/physiology , Neurons/physiology , Parietal Lobe , Task Performance and Analysis
9.
BMC Genomics ; 16: 905, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26545368

ABSTRACT

BACKGROUND: Adult neurogenesis and the incorporation of adult-born neurons into functional circuits requires precise spatiotemporal coordination across molecular networks regulating a wide array of processes, including cell proliferation, apoptosis, neurotrophin signaling, and electrical activity. MicroRNAs (miRs) - short, non-coding RNA sequences that alter gene expression by post-transcriptional inhibition or degradation of mRNA sequences - may be involved in the global coordination of such diverse biological processes. To test the hypothesis that miRs related to adult neurogenesis and related cellular processes are functionally regulated in the nuclei of the avian song control circuit, we used microarray analyses to quantify changes in expression of miRs and predicted target mRNAs in the telencephalic nuclei HVC, the robust nucleus of arcopallium (RA), and the basal ganglia homologue Area X in breeding and nonbreeding Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelli). RESULTS: We identified 46 different miRs that were differentially expressed across seasons in the song nuclei. miR-132 and miR-210 showed the highest differential expression in HVC and Area X, respectively. Analyzing predicted mRNA targets of miR-132 identified 33 candidate target genes that regulate processes including cell cycle control, calcium signaling, and neuregulin signaling in HVC. Likewise, miR-210 was predicted to target 14 mRNAs differentially expressed across seasons that regulate serotonin, GABA, and dopamine receptor signaling and inflammation. CONCLUSIONS: Our results identify potential miR-mRNA regulatory networks related to adult neurogenesis and provide opportunities to discover novel genetic control of the diverse biological processes and factors related to the functional incorporation of new neurons to the adult brain.


Subject(s)
MicroRNAs/genetics , RNA, Messenger/genetics , Animals , Neurons/metabolism , Sensorimotor Cortex/cytology
10.
J Neurosci ; 35(30): 10831-42, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26224865

ABSTRACT

Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT: Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development displays an increased vulnerability to the sensory environment. Here, we identify a precise developmental window during which mild hearing loss affects the maturation of an auditory perceptual cue that is known to support animal communication, including human speech. Furthermore, animals reared with transient hearing loss display deficits in perceptual learning. Our results suggest that speech and language delays associated with transient or permanent childhood hearing loss may be accounted for, in part, by deficits in central auditory processing mechanisms.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Sensory Deprivation/physiology , Animals , Auditory Cortex/growth & development , Female , Gerbillinae , Male
11.
J Neurosci ; 35(8): 3431-45, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25716843

ABSTRACT

Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding.


Subject(s)
Evoked Potentials, Auditory , Neuronal Plasticity , Photoperiod , Prosencephalon/physiology , Seasons , Animals , Auditory Pathways/cytology , Auditory Pathways/metabolism , Auditory Pathways/physiology , Female , Gonadal Steroid Hormones/blood , Male , Neurons/physiology , Prosencephalon/cytology , Prosencephalon/metabolism , Sparrows
12.
J Neurosci ; 34(6): 2276-84, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24501366

ABSTRACT

Manipulations of the sensory environment typically induce greater changes to the developing nervous system than they do in adulthood. The relevance of these neural changes can be evaluated by examining the age-dependent effects of sensory experience on quantitative measures of perception. Here, we measured frequency modulation (FM) detection thresholds in adult gerbils and investigated whether diminished auditory experience during development or in adulthood influenced perceptual performance. Bilateral conductive hearing loss (CHL) of ≈30 dB was induced either at postnatal day 10 or after sexual maturation. All animals were then trained as adults to detect a 5 Hz FM embedded in a continuous 4 kHz tone. FM detection thresholds were defined as the minimum deviation from the carrier frequency that the animal could reliably detect. Normal-hearing animals displayed FM thresholds of 25 Hz. Inducing CHL, either in juvenile or adult animals, led to a deficit in FM detection. However, this deficit was greater for juvenile onset hearing loss (89 Hz) relative to adult onset hearing loss (64 Hz). The effects could not be attributed to sensation level, nor were they correlated with proxies for attention. The thresholds displayed by CHL animals were correlated with shallower psychometric function slopes, suggesting that hearing loss was associated with greater variance of the decision variable, consistent with increased internal noise. The results show that decreased auditory experience has a greater impact on perceptual skills when initiated at an early age and raises the possibility that altered development of CNS synapses may play a causative role.


Subject(s)
Acoustic Stimulation/methods , Auditory Perception/physiology , Auditory Threshold/physiology , Hearing Loss/physiopathology , Age Factors , Animals , Female , Gerbillinae , Male
13.
Proc Natl Acad Sci U S A ; 110(41): 16640-4, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062453

ABSTRACT

A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABAA receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds.


Subject(s)
Brain/metabolism , Neurogenesis/physiology , Passeriformes/physiology , Synaptic Potentials/physiology , Vocalization, Animal/physiology , Analysis of Variance , Animals , Body Weights and Measures , Boron Compounds , Bromodeoxyuridine , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , Heterocyclic Compounds, 3-Ring , Histological Techniques , Immunohistochemistry , Male , Muscimol/administration & dosage , Muscimol/pharmacology , Rhodamines , Washington
14.
Front Neuroendocrinol ; 34(4): 285-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911849

ABSTRACT

Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and mayprovide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances.


Subject(s)
Auditory Pathways/metabolism , Brain/metabolism , Estrogens/metabolism , Vertebrates/metabolism , Animals , Gonadal Steroid Hormones/metabolism , Humans , Sexual Behavior
15.
J Neurosci ; 32(49): 17597-611, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223283

ABSTRACT

Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17ß-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.


Subject(s)
Auditory Perception/physiology , Estradiol/physiology , Prosencephalon/physiology , Vocalization, Animal/physiology , Acoustic Stimulation/methods , Acoustic Stimulation/psychology , Action Potentials/physiology , Animals , Drug Implants/pharmacology , Estradiol/administration & dosage , Estradiol/blood , Female , Neurons/physiology , Photoperiod , Prosencephalon/drug effects , Sparrows/physiology , Vocalization, Animal/drug effects
16.
Article in English | MEDLINE | ID: mdl-20563817

ABSTRACT

Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. Although much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies when compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Photoperiod , Seasons , Sparrows/physiology , Animals , Estradiol/blood , Female , Male , Testosterone/blood
17.
Behav Neurosci ; 122(2): 407-15, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18410179

ABSTRACT

The precise role played by serotonin (5-HT) in taste--an issue of great interest given the involvement of serotonin in human sensory and eating disorders--is a matter of considerable debate, perhaps because of the variety of methodologies that have been brought to bear by different researchers. Here, we use multiple methods to reveal the motivational mechanism whereby 5-HT(1A) receptor activation modulates drinking behavior. Subcutaneous injections of the selective 5-HT(1A) agonist 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT), a drug that reduces 5-HT release by acting on presynaptic autoreceptors, dose-dependently increased consumption of 0.45 M NaCl in a one-bottle test. In a two-bottle test, however, 8-OH-DPAT-treated animals (30 microg/kg/ml) demonstrated decreased NaCl preference--although our detection of this effect was obscured by adaptation to the drug across days. Rats' performance in a brief access test confirmed that 8-OH-DPAT decreased preference for saline by both increasing water consumption and decreasing NaCl consumption. Finally, taste reactivity tests demonstrated that the latter result does not reflect decreased NaCl palatability. Overall, the results suggest that 8-OH-DPAT-induced 5-HT hypofunction increases thirst without substantially affecting the palatability of NaCl.


Subject(s)
Appetite Regulation/physiology , Drinking Behavior/physiology , Food Preferences/physiology , Receptor, Serotonin, 5-HT1A/physiology , Thirst/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Appetite Regulation/drug effects , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Food Preferences/drug effects , Motivation , Rats , Rats, Long-Evans , Serotonin 5-HT1 Receptor Agonists , Serotonin Receptor Agonists/pharmacology , Sodium Chloride , Taste/drug effects , Taste/physiology , Thirst/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...