Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 10: 1292555, 2023.
Article in English | MEDLINE | ID: mdl-38094080

ABSTRACT

Introduction: Rise in Calcium (Ca2+) and hyperactive Ca2+-dependent phosphatase calcineurin represent two key determinants of a-synuclein (a-syn) pathobiology implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin activity can be inhibited with FK506, a Food and Drug Administration (FDA)-approved compound. Our previous work demonstrated a protective effect of low doses of FK506 against a-syn pathology in various models of a-syn related pathobiology. Methods: Control and a-syn-expressing mice (12-18 months old) were injected with vehicle or two single doses of FK506 administered 4 days apart. Cerebral cortex and serum from these mice were collected and assayed using a meso scale discovery quickplex SQ 120 for cytokines and Enzyme-linked immunosorbent assay for IGF-1. Results: In this study we present evidence that reducing calcineurin activity with FK506 in a-syn transgenic mice increased insulin growth factor (IGF-1), while simultaneously decreasing IL-2 levels in both cerebral cortex and serum. Discussion: The highly conserved Ca2+/calcineurin signaling pathway is known to be affected in a-syn-dependent human disease. FK506, an already approved drug for other uses, exhibits high brain penetrance and a proven safety profile. IL-2 and IGF-1 are produced throughout life and can be measured using standard clinical methods. Our findings provide two potential biomarkers that could guide a clinical trial of FK506 in PD patients, without posing significant logistical or regulatory challenges.

2.
Proc Natl Acad Sci U S A ; 120(17): e2217396120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068235

ABSTRACT

Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.


Subject(s)
Octopamine , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Astrocytes/metabolism , Calcineurin/metabolism , Lactates/metabolism , Mammals/metabolism , Neuroprotection , Neurotransmitter Agents/metabolism , Octopamine/metabolism
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723042

ABSTRACT

Ykt6 is a soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) critically involved in diverse vesicular fusion pathways. While most SNAREs rely on transmembrane domains for their activity, Ykt6 dynamically cycles between the cytosol and membrane-bound compartments where it is active. The mechanism that regulates these transitions and allows Ykt6 to achieve specificity toward vesicular pathways is unknown. Using a Parkinson's disease (PD) model, we found that Ykt6 is phosphorylated at an evolutionarily conserved site which is regulated by Ca2+ signaling. Through a multidisciplinary approach, we show that phosphorylation triggers a conformational change that allows Ykt6 to switch from a closed cytosolic to an open membrane-bound form. In the phosphorylated open form, the spectrum of protein interactions changes, leading to defects in both the secretory and autophagy pathways, enhancing toxicity in PD models. Our studies reveal a mechanism by which Ykt6 conformation and activity are regulated with potential implications for PD.


Subject(s)
Conserved Sequence , Models, Molecular , Protein Conformation , R-SNARE Proteins/chemistry , R-SNARE Proteins/metabolism , Amino Acids , Autophagy , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Membrane/metabolism , Evolution, Molecular , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , R-SNARE Proteins/genetics , Structure-Activity Relationship
5.
Front Cell Dev Biol ; 8: 567537, 2020.
Article in English | MEDLINE | ID: mdl-33015061

ABSTRACT

Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.

6.
Lab Chip ; 19(18): 3045-3053, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31406970

ABSTRACT

The majority of microfluidic devices nowadays are built on rigid or bulky substrates such as glass slides and polydimethylsiloxane (PDMS) slabs, and heavily rely on external equipment such as syringe pumps. Although a variety of micropumps have been developed in the past, few of them are suitable for flexible microfluidics or lab-on-a-foil systems. In this paper, stick-and-play acoustic micropump is built on thin and flexible plastic film by printing microstructures termed defended oscillating membrane equipped structures (DOMES) using two-photon polymerization. Specifically, this new micropump induces rectified flow upon the actuation of acoustic waves, and the flow patterns agree with simulation results very well. More importantly, the developed micropump has the capabilities to generate adjustable flow rates as high as 420 nL min-1, and does not suffer from problems such as bubble instability, gas dissolution, and undesired bubble-trapping that commonly occur in other forms of acoustic micropumps. Since the micropump works in stick-and-play mode, it is reusable after cleaning thanks to the easy separation of covers and substrates. Lastly, the developed micropump is applied for creating a self-pumped single-cell trapping device. The excellent trapping capability of the integrated device proves its potential for long-term studies of biological behaviors of individual cells for biomedical applications.


Subject(s)
Acoustics , Microfluidic Analytical Techniques , Saccharomyces cerevisiae/cytology , Single-Cell Analysis , Acoustics/instrumentation , Microfluidic Analytical Techniques/instrumentation , Particle Size , Single-Cell Analysis/instrumentation
7.
Proc Natl Acad Sci U S A ; 114(52): E11313-E11322, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229832

ABSTRACT

Calcineurin is an essential Ca2+-dependent phosphatase. Increased calcineurin activity is associated with α-synuclein (α-syn) toxicity, a protein implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin can be inhibited with Tacrolimus through the recruitment and inhibition of the 12-kDa cis-trans proline isomerase FK506-binding protein (FKBP12). Whether calcineurin/FKBP12 represents a native physiologically relevant assembly that occurs in the absence of pharmacological perturbation has remained elusive. We leveraged α-syn as a model to interrogate whether FKBP12 plays a role in regulating calcineurin activity in the absence of Tacrolimus. We show that FKBP12 profoundly affects the calcineurin-dependent phosphoproteome, promoting the dephosphorylation of a subset of proteins that contributes to α-syn toxicity. Using a rat model of PD, partial elimination of the functional interaction between FKBP12 and calcineurin, with low doses of the Food and Drug Administration (FDA)-approved compound Tacrolimus, blocks calcineurin's activity toward those proteins and protects against the toxic hallmarks of α-syn pathology. Thus, FKBP12 can endogenously regulate calcineurin activity with therapeutic implications for the treatment of PD.


Subject(s)
Calcineurin/metabolism , Parkinson Disease/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Tacrolimus Binding Protein 1A/metabolism , alpha-Synuclein/metabolism , Animals , Calcineurin/genetics , Disease Models, Animal , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/pathology , Phosphoproteins/genetics , Proteome/genetics , Rats , Rats, Sprague-Dawley , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/genetics , alpha-Synuclein/genetics
8.
Dis Model Mech ; 10(5): 519-535, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28468938

ABSTRACT

Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.


Subject(s)
Calcium Signaling , Parkinson Disease/metabolism , Calcium/metabolism , Humans , Organelles/metabolism
9.
Proc Natl Acad Sci U S A ; 111(34): E3544-52, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25122673

ABSTRACT

Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase's activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.


Subject(s)
Calcineurin/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Calcineurin/genetics , Calcineurin Inhibitors , Calcium Signaling , Calmodulin/metabolism , Cells, Cultured , Gene Knockdown Techniques , Humans , Lewy Body Disease/metabolism , Mice , Mice, Transgenic , Models, Neurological , NFATC Transcription Factors/metabolism , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/metabolism , Phosphoric Monoester Hydrolases/metabolism , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/toxicity , Tacrolimus/pharmacology , alpha-Synuclein/genetics
10.
Annu Rev Cell Dev Biol ; 26: 211-33, 2010.
Article in English | MEDLINE | ID: mdl-20500090

ABSTRACT

In the late 1990s, mutations in the synaptic protein α-synuclein (α-syn) were identified in families with hereditary Parkinson's disease (PD). Rapidly, α-syn became the target of numerous investigations that have transformed our understanding of the pathogenesis underlying this disorder. α-Syn is the major component of Lewy bodies (LBs), cytoplasmic protein aggregates that form in the neurons of PD patients. α-Syn interacts with lipid membranes and adopts amyloid conformations that deposit within LBs. Work in yeast and other model systems has revealed that α-syn-associated toxicity might be the consequence of abnormal membrane interactions and alterations in vesicle trafficking. Here we review evidence regarding α-syn's normal interactions with membranes and regulation of synaptic vesicles as well as how overexpression of α-syn yields global cellular dysfunction. Finally, we present a model linking vesicle dynamics to toxicity with the sincere hope that understanding these disease mechanisms will lead to the development of novel, potent therapeutics.


Subject(s)
Parkinson Disease/pathology , alpha-Synuclein/metabolism , Animals , Humans , Lewy Bodies/metabolism , Parkinson Disease/metabolism , Transport Vesicles/metabolism
11.
J Biol Chem ; 284(29): 19437-44, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19473983

ABSTRACT

Multiple studies suggest that phospholipase C-gamma (PLC-gamma) contributes to regulation of sodium/hydrogen exchanger 3 (NHE3) in the small intestine, although the mechanism(s) for this regulation remain unknown. We demonstrate here that PLC-gamma binds directly to the C terminus of NHE3 and exists in similar sized multiprotein complexes as NHE3. This binding is dynamic and decreases with elevated [Ca(2+)](i). The PLC-gamma-binding site in NHE3 was identified (amino acids 586-605) and shown to be a critical regulatory domain for protein complex formation, because when it is mutated, NHE3 binding to PLC-gamma as well as NHERF2 is lost. An inhibitory peptide, which binds to the Src homology 2 domains contained in PLC-gamma without interrupting binding of PLC-gamma to NHE3, was used to probe a non-lipase-dependent role of PLC-gamma. In the presence of this peptide, carbachol-stimulated calcium inhibition of NHE3 was lost. These results mirror previous studies with the transient receptor potential channel and suggest that PLC-gamma may play a common role in regulating the cell-surface expression of ion transporters.


Subject(s)
Calcium/metabolism , Phospholipase C gamma/metabolism , Sodium-Hydrogen Exchangers/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Blotting, Western , Boron Compounds/chemistry , Caco-2 Cells , Calcimycin/pharmacology , Carbachol/pharmacology , Cell Line , Humans , Immunoprecipitation , Ion Transport/drug effects , Ionophores/pharmacology , Molecular Sequence Data , Mutation , Peptides/chemistry , Peptides/pharmacology , Phosphoproteins/metabolism , Protein Binding/drug effects , Rabbits , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/genetics
12.
Science ; 314(5796): 122-5, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17023658

ABSTRACT

TFII-I is a transcription factor and a target of phosphorylation by Bruton's tyrosine kinase. In humans, deletions spanning the TFII-I locus are associated with a cognitive defect, the Williams-Beuren cognitive profile. We report an unanticipated role of TFII-I outside the nucleus as a negative regulator of agonist-induced calcium entry (ACE) that suppresses surface accumulation of TRPC3 (transient receptor potential C3) channels. Inhibition of ACE by TFII-I requires phosphotyrosine residues that engage the SH2 (Src-homology 2) domains of phospholipase C-g (PLC-g) and an interrupted, pleckstrin homology (PH)-like domain that binds the split PH domain of PLC-g. Our observations suggest a model in which TFII-I suppresses ACE by competing with TRPC3 for binding to PLC-g.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Phospholipase C gamma/metabolism , TRPC Cation Channels/metabolism , Transcription Factors, TFII/metabolism , Amino Acid Sequence , Animals , Bradykinin/pharmacology , Cell Line , Cell Membrane/metabolism , Cytoplasm/metabolism , Humans , Models, Biological , Molecular Sequence Data , PC12 Cells , Phospholipase C gamma/chemistry , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Rats , Transcription Factors, TFII/chemistry , Uridine Triphosphate/pharmacology , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...