Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 31(1): 103-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16475003

ABSTRACT

The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.


Subject(s)
Glucose/metabolism , Pigment Epithelium of Eye/metabolism , Animals , Carbon Dioxide/metabolism , Diabetes Mellitus, Experimental , Female , Glycogen/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Rats , Rats, Long-Evans
2.
J Neurochem ; 88(4): 885-90, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14756809

ABSTRACT

It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.


Subject(s)
Glycogen/metabolism , Retina/metabolism , Animals , Darkness , Dose-Response Relationship, Drug , Glucose/pharmacology , In Vitro Techniques , Lactic Acid/metabolism , Light , NAD/metabolism , Pyruvic Acid/metabolism , Rats , Rats, Long-Evans , Retina/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...