Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 412(11): 2399-2412, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32072213

ABSTRACT

The detection of circulating miRNA through isothermal amplification wields many attractive advantages over traditional methods, such as reverse transcription RT-qPCR. However, it is challenging to control the background signal produced in the absence of target, which severely hampers applications of such methods for detecting low abundance targets in complex biological samples. In the present work, we employed both the cobalt oxyhydroxide (CoOOH) nanoflakes and the chemical modification of hexanediol to block non-specific template elongation in exponential amplification reaction (EXPAR). Adsorption by the CoOOH nanoflakes and the hexanediol modification at the 3' end effectively prevented no-target polymerization on the template itself and thus greatly improved the performance of EXPAR, detecting as low as 10 aM of several miRNA targets, including miR-16, miR-21, and miR-122, with the fluorescent DNA staining dye of SYBR Gold™. Little to no cross-reactivity was observed from the interfering strands present in 10-fold excess. Besides contributing to background reduction, the CoOOH nanoflakes strongly adsorbed nucleic acids and isolated them from a complex sample matrix, thus permitting successful detection of the target miRNA in the serum. We expect that simple but sensitive template-blocking EXPAR could be a valuable tool to help with the discovery and validation of miRNA markers in biospecimens. Graphical abstract.


Subject(s)
Circulating MicroRNA/blood , MicroRNAs/blood , Nucleic Acid Amplification Techniques/methods , Circulating MicroRNA/analysis , Cobalt/chemistry , Humans , MicroRNAs/analysis , Nanostructures/chemistry , Oxides/chemistry
2.
Anal Bioanal Chem ; 410(3): 1053-1060, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29030663

ABSTRACT

MicroRNAs (miRNAs) are small RNAs that bind to mRNA targets and regulate their translation. A functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ silica columns or the TRIzol reagent but give out low recovery for small RNAs probably due to their short strand lengths. Herein, we fabricated the titanium dioxide nanofibers using electrospinning to facilitate miRNA extraction and developed the optimal buffer conditions to improve miRNA recovery from biological matrices of cell lysate and serum. We found that our TiO2 fibers could obtain a recovery of 18.0 ± 3.6% for miRNA fibers while carrying out the extraction in the more complex medium of cell lysate, much higher than the 0.02 ± 0.0001% recovery from the commercial kit. The much improved extraction of miRNAs from our fibers could be originated from the strong coordination between TiO2 and RNA's phosphate backbone. In addition, the binding, washing, and elution buffers judiciously developed in the present study can achieve selective extraction of small RNA shorter than 500 nucleotides in length. Our results demonstrate that TiO2 nanofibers can work as a valuable tool for extraction of miRNAs from biological samples with high recovery. Graphical abstract Schematic for extraction of small RNAs using TiO2 nanofibers.


Subject(s)
MicroRNAs/isolation & purification , Nanofibers/chemistry , Solid Phase Extraction/methods , Titanium/chemistry , Adsorption , Buffers , Cell Line, Tumor , Electrochemical Techniques , Humans , MicroRNAs/blood , Nanofibers/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...