Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 69(13): 3293-3312, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29514298

ABSTRACT

Grain legumes form an important component of the human diet, provide feed for livestock, and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress, posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the past half century. To achieve faster genetic gains in legumes in rainfed conditions, this review proposes the integration of modern genomics approaches, high throughput phenomics, and simulation modelling in support of crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval, and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experimental plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains, including not only productivity but also nutritional and market traits, will increase the profitability of farming and the availability of affordable nutritious food especially in developing countries.


Subject(s)
Agriculture/economics , Agriculture/methods , Fabaceae/genetics , Plant Breeding , Crop Production/methods , Genomics , Models, Biological , Phenotype , Systems Biology
2.
Agric Syst ; 165: 344-353, 2018 Sep.
Article in English | MEDLINE | ID: mdl-32287945

ABSTRACT

Food insecurity persists in many parts of Africa and Asia, despite ongoing agricultural research for development (AR4D) interventions. This is resulting in a growing demand for alternative approaches to designing and evaluating interventions in complex systems. Theory of Change (ToC) is an approach which may be useful because it enables stakeholders to present and test their theories and assumptions about why and how impact may occur, ideally within an environment conducive to iterative reflection and learning. However, ToC is yet to be appropriately mainstreamed into development by donors, researchers and practitioners. We carried out a literature review, triangulated by interviews with 26 experts in African and Asian food security, consisting of researchers, advisors to programs, and donors. Although 17 (65%) of the experts had adopted ToC, their responses and the literature revealed four challenges to mainstreaming: (i) different interpretations of ToC; (ii) incoherence in relationships among the constituent concepts of ToC; (iii) confused relationships between ToC and project "logframes"; and (iv) limitations in necessary skills and commitment for enacting ToC. A case study of the evolution of a ToC in a West African AR4D project over 4 years which exemplified these challenges is presented. Five recommendations arise to assist the mainstreaming of ToC: (i) select a type of ToC suited to the relative complexity of the problem and focal system of interest; (ii) state a theory or hypotheses to be tested as the intervention progresses; (iii) articulate the relationship between the ToC and parallel approaches (e.g. logframe); (iv) accept that a ToC is a process, and (v) allow time and resources for implementers and researchers to develop ToC thinking within projects. Finally, we suggest that communities of practice should be established among AR4D and donor organisations to test, evaluate and improve the contribution that ToCs can make to sustainable food security and agricultural development.

3.
Proc Natl Acad Sci U S A ; 110(21): 8381-6, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23671071

ABSTRACT

Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Ecosystem , Agriculture/economics , Australia , Crops, Agricultural/economics , Fertilizers/economics , Food Supply/economics , Food Supply/methods , Nitrous Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...