Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299590

ABSTRACT

Composite anode material based on Fe3O4 and reduced graphene oxide is prepared by base-catalysed co-precipitation and sonochemical dispersion. Structural and morphological characterizations demonstrate an effective and homogeneous embedding of Fe3O4 nanoparticles in the carbonaceous matrix. Electrochemical characterization highlights specific capacities higher than 1000 mAh g-1 at 1C, while a capacity of 980 mAhg-1 is retained at 4C, with outstanding cycling stability. These results demonstrate a synergistic effect by nanosize morphology of Fe3O4 and inter-particle conductivity of graphene nanosheets, which also contribute to enhancing the mechanical and cycling stability of the electrode. The outstanding capacity delivered at high rates suggests a possible application of the anode material for high-power systems.

2.
ChemSusChem ; 10(23): 4771-4777, 2017 12 08.
Article in English | MEDLINE | ID: mdl-28881495

ABSTRACT

The design of effective supporting matrices to efficiently cycle Si nanoparticles is often difficult to achieve and requires complex preparation strategies. In this work, we present a simple synthesis of low-cost and environmentally benign aAnatase TiO2 nanoparticles as buffering filler for Si nanoparticles (Si@TiO2 ). The average anatase TiO2 crystallite size was approximately 5 nm. A complete structural, morphological, and electrochemical characterization was performed. Electrochemical test results show very good specific capacity values of up to 1000 mAh g-1 and cycling at several specific currents, ranging from 500 to 2000 mA g-1 , demonstrating a very good tolerance to high cycling rates. Postmortem morphological analysis shows very good electrode integrity after 100 cycles at 500 mA g-1 specific current.


Subject(s)
Electric Power Supplies , Lithium , Nanoparticles/chemistry , Titanium/chemistry , Electrochemistry , Electrodes , Green Chemistry Technology/methods , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL
...