Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Pharmacol ; 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23302003

ABSTRACT

In 1994, the isolation of an opioid receptor-related clone soon led to the isolation and characterization of a novel neuropeptide, termed nociceptin or orphanin FQ (N/OFQ). This heptadecapeptide binds to the N/OFQ receptor (NOP) with high affinity, but does not interact directly with classical opioid receptors. The regional distribution of N/OFQ and of its receptor suggest any possible involvement of this neurotransmission system in motor and balance control, reinforcement and reward, nociception, stress response, sexual behavior, aggression and autonomic control of physiological processes as well as of immune functions. The actions of N/OFQ may also be uniquely dependent on contextual factors, both genetic and environmental. As for most of the G protein coupled receptors, NOP C-terminal sequences are believed to interact with proteins that are mandatory for anchoring receptor at the plasma membrane, internalization, recycling, or degradation after ligand binding. Increasing details of how NOP receptors are activated and removed from the plasma membrane have been elucidated in vitro, and more importantly in a physiological context. Details of how these receptors travel and recycle following internalization have also shed light on the importance of such mechanisms for any potential therapeutic use of NOP ligands. A picture of the pathways and proteins involved in these processes is beginning to emerge. This review will address molecular events contributing to NOP receptor signaling and trafficking.

2.
Front Pharmacol ; 3: 203, 2012.
Article in English | MEDLINE | ID: mdl-23271999

ABSTRACT

Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules. Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between ß(1) integrins and vascular cell adhesion molecule (VCAM)-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α(4)ß(1) integrin as a therapeutic target. Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs. This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis.

3.
Biochim Biophys Acta ; 1823(8): 1252-63, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22668508

ABSTRACT

REST (repressor element 1-silencing transcription factor) is a transcription factor that recruits histone deacetylases to silence gene transcription. REST appears to play a paradoxical role in cancer cells: it exhibits tumor suppressor activity or promotes tumorigenesis, depending upon the setting. The extracellular signaling molecules that control REST gene expression in cancer cells remain poorly understood. In this study, we report that REST expression in HeLa cells is elevated in cells exposed to epidermal growth factor or serum, whereas the rate of cell apoptosis is low. Apoptosis induced by serum withdrawal is significantly increased in HeLa cells treated with an antisense phosphorothioate oligodeoxynucleotide (AS ODN) capable of down-regulating REST expression, whereas in HeLa cells transfected with a REST expressing plasmid, REST overexpression reduces the marked apoptosis caused, in absence of serum, by exposure to an anti-Fas receptor antibody imitating the Fas ligand activity plus PD 98059, a blocker of extracellular signal-regulated kinase 1/2 activation. REST knockdown also reduces mRNA levels of the antiapoptotic protein Bcl-X(L) whereas in HeLa cells overexpressing REST, the reduction of Bcl-X(L) mRNA caused by the anti-Fas receptor antibody plus PD 98059 is significantly decreased. Finally, we report that acetylation of histone H3 is increased in HeLa cells exposed to AS ODN or anti-Fas receptor antibody, whereas it is reduced in cells transfected with the REST expressing plasmid. Our findings indicate that REST is a novel gene regulated by EGF in HeLa cells that potentially contributes to the modulation of apoptosis via epigenetic mechanisms.


Subject(s)
Apoptosis , Epidermal Growth Factor/physiology , Histones/metabolism , Repressor Proteins/genetics , Up-Regulation , Acetylation , Caspase 3/metabolism , Caspase 7/metabolism , Cell Nucleus/metabolism , Cell Survival , Culture Media , Culture Media, Serum-Free , Epigenesis, Genetic , Gene Expression , Gene Knockdown Techniques , HeLa Cells , Humans , Oligonucleotides, Antisense/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
4.
Mol Vis ; 17: 3208-23, 2011.
Article in English | MEDLINE | ID: mdl-22194647

ABSTRACT

PURPOSE: Glucocorticoids can either suppress gene transcription (transrepression) or activate it (transactivation). This latter process may contribute to certain side effects caused by these agents. Mapracorat (also known as BOL-303242-X or ZK 245186) is a novel selective glucocorticoid receptor agonist that maintains a beneficial anti-inflammatory activity but seems to be less effective in transactivation, resulting in a lower potential for side effects; it has been proposed for the topical treatment of inflammatory skin disorders. This study assessed the anti-allergic activity of mapracorat at the ocular level and whether eosinophils and mast cells are targets of its action. METHODS: With in vitro studies apoptosis was evaluated in human eosinophils by flow cytometry and western blot of caspase-3 fragments. Eosinophil migration toward platelet-activating factor was evaluated by transwell assays. Interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), and the chemokine (C-C motif) ligand 5 (CCL5)/regulated upon activation normal T cell expressed, and presumably secreted (RANTES) were measured using a high-throughput multiplex luminex technology. Annexin I and the chemochine receptor C-X-C chemokine receptor 4 (CXCR4) were detected by flow cytometry. With in vivo studies, allergic conjunctivitis was induced in guinea pigs sensitized to ovalbumin by an ocular allergen challenge and evaluated by a clinical score. Conjunctival eosinophils were determined by microscopy or eosinophil peroxidase assay. RESULTS: In cultured human eosinophils, mapracorat showed the same potency as dexamethasone but displayed higher efficacy in increasing spontaneous apoptosis and in counteracting cytokine-sustained eosinophil survival. These effects were prevented by the glucocorticoid receptor antagonist mifepristone. Mapracorat inhibited eosinophil migration and IL-8 release from eosinophils or the release of IL-6, IL-8, CCL5/RANTES, and TNF-α from a human mast cell line with equal potency as dexamethasone, whereas it was clearly less potent than this glucocorticoid in inducing annexin I and CXCR4 expression on the human eosinophil surface; this was taken as a possible sign of glucocorticoid-dependent transactivation. In the guinea pig, mapracorat or dexamethasone eye drops induced an analogous reduction in clinical symptoms of allergic conjunctivitis and conjunctival eosinophil accumulation. CONCLUSIONS: Mapracorat appears to be a promising candidate for the topical treatment of allergic eye disorders. It maintains an anti-allergic profile similar to that of dexamethasone but seems to have fewer transactivation effects in comparison to this classical glucocorticoid. Some of its cellular targets may contribute to eosinophil apoptosis and/or to preventing their recruitment and activation and to inhibiting the release of cytokines and chemokines.


Subject(s)
Anti-Allergic Agents/administration & dosage , Benzofurans/administration & dosage , Conjunctiva/drug effects , Conjunctivitis, Allergic/drug therapy , Eosinophils/drug effects , Pentanols/administration & dosage , Quinolines/administration & dosage , Receptors, Glucocorticoid/agonists , Administration, Ophthalmic , Animals , Annexin A1/analysis , Anti-Allergic Agents/therapeutic use , Apoptosis/drug effects , Benzofurans/therapeutic use , Blotting, Western , Caspase 3/analysis , Caspase 3/biosynthesis , Cells, Cultured , Conjunctiva/immunology , Conjunctiva/pathology , Conjunctivitis, Allergic/chemically induced , Conjunctivitis, Allergic/immunology , Cytokines/biosynthesis , Cytokines/immunology , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Eosinophils/immunology , Eosinophils/metabolism , Flow Cytometry , Guinea Pigs , Humans , Male , Mifepristone/pharmacology , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/therapeutic use , Ovalbumin/adverse effects , Pentanols/therapeutic use , Quinolines/therapeutic use , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism
5.
Neurochem Int ; 56(2): 308-17, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19913583

ABSTRACT

Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents.


Subject(s)
Protein Kinase C/metabolism , Receptors, Opioid, mu/genetics , Repressor Proteins/physiology , Transcription, Genetic/physiology , Up-Regulation/physiology , Base Sequence , Cell Line, Tumor , DNA Primers , Down-Regulation/drug effects , Enzyme Activation , Humans , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...