Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 45(8): 1819-1835, 2017 08.
Article in English | MEDLINE | ID: mdl-28550499

ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is at present one of the most used methodologies for functional brain exploration, both in clinical and research settings. fMRI can noninvasively measure neural activity by using specific experimental paradigms. Often, these paradigms require the stimulation of the subject to perform sensorimotor tasks: in the past, the stimuli have been administered manually for investigating fundamental aspects of tactile perception and somatosensory processing. Nowadays, the use of mechatronic devices to stimulate the subject during fMRI studies is growing, also to assure reproducibility, control, and monitoring of task performances. For these reasons, researchers are interested in designing interfaces to be used inside the MRI environment during fMRI studies. For the design of every new device safety and compatibility constraints, imposed by the presence of high static magnetic field, switching magnetic gradients and radiofrequency electromagnetic pulses, must be satisfied. Moreover, it should be considered that functional imaging sequences are even more sensitive to perturbations of the magnetic field than MRI standard diagnostic sequences. Despite several existing devices for use in fMRI studies, an extensive review is still lacking. Our survey aims to introduce into the challenges imposed on the development of fMRI-compatible devices. The current state of the art of compatible devices in fMRI will be presented, pointing out the functionalities and peculiarities of various kinds of device. A particular emphasis will be placed on the tests for the evaluation of fMRI compatibility. This review will be useful both for designers of devices to be used in fMRI studies and for neuroscientists that are having to design fMRI experimental paradigm, and therefore require an overview of existing instruments, but also a knowledge of the benefits and criticism arising from their use.


Subject(s)
Brain Mapping/instrumentation , Contraindications , Equipment Design/methods , Equipment Failure Analysis/methods , Magnetic Resonance Imaging/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Humans
2.
Article in English | MEDLINE | ID: mdl-25570893

ABSTRACT

The objective of the INTERACTION Eu project is to develop and validate an unobtrusive and modular system for monitoring daily life activities, physical interactions with the environment and for training upper and lower extremity motor function in stroke subjects. This paper describes the development and preliminary testing of the project sensing platform made of sensing shirt, trousers, gloves and shoes. Modular prototypes were designed and built considering the minimal set of inertial, force and textile sensors that may enable an efficient monitoring of stroke patients. The single sensing elements are described and the results of their preliminary lab-level testing are reported.


Subject(s)
Activities of Daily Living , Monitoring, Physiologic/instrumentation , Stroke/physiopathology , Electrodes , Electromyography , Humans , Lower Extremity/physiology , Movement , Upper Extremity/physiology
3.
IEEE Trans Inf Technol Biomed ; 14(3): 702-10, 2010 May.
Article in English | MEDLINE | ID: mdl-20378475

ABSTRACT

The current state of the art in wearable electronics is the integration of very small devices into textile fabrics, the so-called ¿smart garment.¿ The ProeTEX project is one of many initiatives dedicated to the development of smart garments specifically designed for people who risk their lives in the line of duty such as fire fighters and Civil Protection rescuers. These garments have integrated multipurpose sensors that monitor their activities while in action. To this aim, we have developed an algorithm that combines both features extracted from the signal of a triaxial accelerometer and one ECG lead. Microprocessors integrated in the garments detect the signal magnitude area of inertial acceleration, step frequency, trunk inclination, heart rate (HR), and HR trend in real time. Given these inputs, a classifier assigns these signals to nine classes differentiating between certain physical activities (walking, running, moving on site), intensities (intense, mild, or at rest) and postures (lying down, standing up). Specific classes will be identified as dangerous to the rescuer during operation, such as, ¿subject motionless lying down¿ or ¿subject resting with abnormal HR.¿ Laboratory tests were carried out on seven healthy adult subjects with the collection of over 4.5 h of data. The results were very positive, achieving an overall classification accuracy of 88.8%.


Subject(s)
Emergency Medical Technicians , Heart Rate/physiology , Monitoring, Ambulatory/methods , Rescue Work , Signal Processing, Computer-Assisted , Adult , Algorithms , Clothing , Electrocardiography/methods , Humans , Kinetocardiography/methods , Locomotion/physiology , Male , Motor Activity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...