Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 33(32): 4173-84, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24213577

ABSTRACT

The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel adjuvant strategy to eradicate high-risk PAX3-FOXO1 alveolar RMS.


Subject(s)
Forkhead Transcription Factors/metabolism , Muscle Proteins/antagonists & inhibitors , Paired Box Transcription Factors/metabolism , Polycomb Repressive Complex 2/physiology , Rhabdomyosarcoma, Alveolar/metabolism , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , Adolescent , Apoptosis , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Cell Survival , Child , Enhancer of Zeste Homolog 2 Protein , Female , Forkhead Box Protein O1 , Gene Expression Regulation, Neoplastic , Gene Silencing , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Homeostasis , Humans , Male , Muscle Proteins/physiology , PAX3 Transcription Factor , SKP Cullin F-Box Protein Ligases/physiology
2.
Oncogene ; 33(12): 1601-8, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-23584479

ABSTRACT

Mutant p53 proteins are expressed at high frequency in human tumors and are associated with poor clinical prognosis and resistance to chemotherapeutic treatments. Here we show that mutant p53 proteins downregulate micro-RNA (miR)-223 expression in breast and colon cancer cell lines. Mutant p53 binds the miR-223 promoter and reduces its transcriptional activity. This requires the transcriptional repressor ZEB-1. We found that miR-223 exogenous expression sensitizes breast and colon cancer cell lines expressing mutant p53 to treatment with DNA-damaging drugs. Among the putative miR-223 targets, we focused on stathmin-1 (STMN-1), an oncoprotein known to confer resistance to chemotherapeutic drugs associated with poor clinical prognosis. Mutant p53 silencing or miR-223 exogenous expression lowers the levels of STMN-1 and knockdown of STMN-1 by small interfering RNA increases cell death of mutant p53-expressing cell lines. On the basis of these findings, we propose that one of the pathways affected by mutant p53 to increase cellular resistance to chemotherapeutic agents involves miR-223 downregulation and the consequent upregulation of STMN-1.


Subject(s)
Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , Mutation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Stathmin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...