Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570315

ABSTRACT

Canine mammary carcinomas (CMC) are associated with major aggressive clinical behavior and high mortality. The current standard of care is based on surgical resection, without an established effective treatment scheme, highlighting the urgent need to develop novel effective therapies. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis and progression in the majority of solid cancers, including human and canine mammary carcinomas. The first therapy developed to target VEGF was bevacizumab, a recombinant humanized monoclonal antibody, which has already been approved as an anticancer agent in several human cancers. The goal of this work was to establish the therapeutic value of MB02 bevacizumab biosimilar in CMC. First, through different in silico approaches using the MUSCLE multiple-sequence alignment tool and the FoldX protein design algorithm, we were able to predict that canine VEGF is recognized by bevacizumab, after showing an extremely high sequence similarity between canine and human VEGF. Further, by using an ELISA-based in vitro binding assay, we confirmed that MB02 biosimilar was able to recognize canine VEGF. Additionally, canine VEGF-induced microvascular endothelial cell proliferation was inhibited in a concentration-dependent manner by MB02 biosimilar. These encouraging results show a high potential for MB02 as a promising therapeutic agent for the management of CMC.

2.
Oncol Rep ; 49(5)2023 05.
Article in English | MEDLINE | ID: mdl-36960859

ABSTRACT

PIN1 is the only known enzyme capable of recognizing and isomerizing the phosphorylated Serine/Threonine­Proline motif. Through this mechanism, PIN1 controls diverse cellular functions, including telomere maintenance. Both PIN1 overexpression and its involvement in oncogenic pathways are involved in several cancer types, including glioblastoma (GBM), a lethal disease with poor therapeutic resources. However, knowledge of the role of PIN1 in GBM is limited. Thus, the present work aimed to study the role of PIN1 as a telomere/telomerase regulator and its contribution to tumor biology. PIN1 knockout (KO) LN­229 cell variant using CRISPR/Cas9 was developed and compared with PIN1 LN­229 expressing cells. To study the effect of PIN1 absence, status of NF­κB pathway was evaluated by luciferase reporter gene assay and quantitative PCR. Results revealed that PIN1 deletion in GBM cells diminished the active levels of NF­κB and decrease the transcription of il­8 and htert genes. Then, telomere/telomerase related processes were studied by RQ­TRAP assay and telomere length determination by qPCR, obtaining a reduction both in telomerase activity as in telomere length in PIN1 KO cells. In addition, measurement of SA ß­galactosidase and caspase­3 activities revealed that loss of PIN1 triggers senescence and apoptosis. Finally, migration, cell cycle progression and tumorigenicity were studied by flow cytometry/western blot, Transwell assay and in vivo experiments, respectively. PIN1 deletion decreased migration as well as cell cycle progression by increasing doubling time and also resulted in the loss of LN­229 cell ability to form tumors in mice. These results highlight the role of PIN1 in telomere homeostasis and GBM progression, which supports PIN1 as a potential molecular target for the development of novel therapeutic agents for GBM treatment.


Subject(s)
Glioblastoma , Telomerase , Humans , Animals , Mice , Glioblastoma/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Telomerase/metabolism , Polymerase Chain Reaction , Telomere/genetics , Telomere/metabolism , Cell Line, Tumor , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism
3.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230732

ABSTRACT

Malignant gliomas are the most common primary central nervous system tumor in adults. Despite current therapeutics, these tumors are associated with poor prognosis and a median survival of 16 to 19 months. This highlights the need for innovative treatments for this incurable disease. Rac1 has long been associated with tumor progression and plays a key role in glioma's infiltrative and invasive nature. The aim of this study is to evaluate the 1A-116 molecule, a Rac1 inhibitor, as targeted therapy for this aggressive disease. We found that targeting Rac1 inhibits cell proliferation and cell cycle progression using different in vitro human glioblastoma models. Additionally, we evaluated 1A-116 in vivo, showing a favorable toxicological profile. Using in silico tools, 1A-116 is also predicted to penetrate the blood-brain barrier and present a favorable metabolic fate. In line with these results, 1A-116 i.p daily treatment resulted in a dose-dependent antitumor effect in an orthotopic IDH-wt glioma model. Altogether, our study provides a strong potential for clinical translation of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target.

4.
Front Pediatr ; 10: 883395, 2022.
Article in English | MEDLINE | ID: mdl-35874580

ABSTRACT

Background: SARS-CoV-2 infection is associated with a wide range of clinical manifestations and severity. Pediatric cases represent <10% of total cases, with a mortality rate below 1%. Data of correlation between SARS-CoV-2 viral load in respiratory samples and severity of disease in pediatric patients is scarce. The cycle threshold (CT) value for the detection of SARS-CoV-2 could be used as an indirect indicator of viral load in analyzed respiratory samples. Objective: The aim of this study was to describe CT values and their correlation with clinical manifestations, epidemiology and laboratory parameters in pediatric patients with confirmed COVID-19. Methods: In this observational, retrospective, analytic and single-center study we included patients under 15 years with confirmed COVID-19 by RT-PCR SARS-CoV-2 admitted to the Isidoro Iriarte Hospital (Argentina) between March 1st 2020 and April 30th 2021. Results: 485 patients were included, the distribution according to disease severity was: 84% (408 patients) presented mild disease, 12% (59 patients) moderate disease and 4% (18 patients) severe disease. Patients with moderate and severe illness had an increased hospitalization rate, prolonged hospitalization, higher frequency of comorbidities and oxygen and antibiotics use. CT values, that could be used as an indirect measure of viral load, was associated with severity of clinical manifestations and age under 12 months. No patient required admission to PICU nor mechanical ventilation. No deaths were registered. Conclusions: In this study, the viral load of SARS-CoV-2 in respiratory samples, determined by the cycle threshold, was significantly correlated with moderate to severe cases and with age.

6.
Pharmaceutics ; 13(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34371781

ABSTRACT

The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases) is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human glioblastoma cells and tumor-bearing nude mice. METHODS: Wild-type LN229 and BMAL1-deficient (i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1, and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels. The effects of 1A-116 on proliferation, apoptosis, and migration were then assessed upon applying the drug at different circadian times. Finally, 1A-116 was administered to tumor-bearing mice at two different circadian times. RESULTS: In LN229 cells, circadian oscillations were found for BMAL1, PER1, and TIAM1 (mRNA and protein), and for the effects of 1A-116 on proliferation, apoptosis, and migration, which were abolished in LN229E1 cells. Increased survival time was observed in tumor-bearing mice when treated with 1A-116 at the end of the light period (zeitgeber time 12, ZT12) compared either to animals treated at the beginning (ZT3) or with vehicle. CONCLUSIONS: These results unveil the circadian modulation in the efficacy of 1A-116, likely through RAC1 pathway rhythmicity, suggesting that a chronopharmacological approach is a feasible strategy to improve glioblastoma treatment.

7.
EClinicalMedicine ; 37: 100959, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34189446

ABSTRACT

BACKGROUND: There are limited antiviral options for the treatment of patients with COVID-19. Ivermectin (IVM), a macrocyclic lactone with a wide anti-parasitary spectrum, has shown potent activity against SARS-CoV-2 in vitro. This study aimed at assessing the antiviral effect of IVM on viral load of respiratory secretions and its relationship with drug concentrations in plasma. METHODS: Proof-of-concept, pilot, randomized, controlled, outcome-assessor blinded trial to evaluate antiviral activity of high-dose IVM in 45 COVID-19 hospitalized patients randomized in a 2:1 ratio to standard of care plus oral IVM at 0·6 mg/kg/day for 5 days versus standard of care in 4 hospitals in Argentina. Eligible patients were adults with RT-PCR confirmed SARS-CoV-2 infection within 5 days of symptoms onset. The primary endpoint was the difference in viral load in respiratory secretions between baseline and day-5, by quantitative RT-PCR. Concentrations of IVM in plasma were measured. Study registered at ClinicalTrials.gov: NCT04381884. FINDINGS: 45 participants were recruited (30 to IVM and 15 controls) between May 18 and September 9, 2020. There was no difference in viral load reduction between groups but a significant difference was found in patients with higher median plasma IVM levels (72% IQR 59-77) versus untreated controls (42% IQR 31-73) (p = 0·004). Mean ivermectin plasma concentration levels correlated with viral decay rate (r: 0·47, p = 0·02). Adverse events were similar between groups. No differences in clinical evolution at day-7 and day-30 between groups were observed. INTERPRETATION: A concentration dependent antiviral activity of oral high-dose IVM was identified at a dosing regimen that was well tolerated. Large trials with clinical endpoints are necessary to determine the clinical utility of IVM in COVID-19. FUNDING: This work was supported by grant IP-COVID-19-625, Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina and Laboratorio ELEA/Phoenix, Argentina.

8.
Front Cell Dev Biol ; 8: 240, 2020.
Article in English | MEDLINE | ID: mdl-32351958

ABSTRACT

In the last years, the development of new drugs in oncology has evolved notably. In particular, drug development has shifted from empirical screening of active cytotoxic compounds to molecularly targeted drugs blocking specific biologic pathways that drive cancer progression and metastasis. Using a rational design approach, our group has developed 1A-116 as a promising Rac1 inhibitor, with antitumoral and antimetastatic effects in several types of cancer. Rac1 is over activated in a wide range of tumor types and and it is one of the most studied proteins of the Rho GTPase family. Its role in actin cytoskeleton reorganization has effects on endocytosis, vesicular trafficking, cell cycle progression and cellular migration. In this context, the regulatory activity of Rac1 affects several key processes in the course of the cancer including invasion and metastasis. The purpose of this preclinical study was to focus on the mode of action of 1A-116, conducting an interdisciplinary approach with in silico bioinformatics tools and in vitro assays. Here, we demonstrate that the tryptophan 56 residue is necessary for the inhibitory effects of 1A-116 since this compound interferes with protein-protein interactions (PPI) of Rac1GTPase involving several GEF activators. 1A-116 is also able to inhibit the oncogenic Rac1P29S mutant protein, one of the oncogenic drivers found in sun-exposed melanoma. It also inhibits numerous Rac1-regulated cellular processes such as membrane ruffling and lamellipodia formation. These results deepen our knowledge of 1A-116 inhibition of Rac1 and its biological impact on cancer progression. They also represent a good example of how in silico analyses represent a valuable approach for drug development.

9.
Oncotarget ; 8(58): 98509-98523, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228706

ABSTRACT

Rac1 GTPase has long been recognized as a critical regulatory protein in different cellular and molecular processes involved in cancer progression, including acute myeloid leukemia. Here we show the antitumoral activity of ZINC69391 and 1A-116, two chemically-related Rac1 pharmacological inhibitors, on a panel of four leukemic cell lines representing different levels of maturation. Importantly, we show that the main mechanism involved in the antitumoral effect triggered by the Rac1 inhibitors comprises the induction of the mitochondrial or intrinsic apoptotic pathway. Interestingly, Rac1 inhibition selectively induced apoptosis on patient-derived leukemia cells but not on normal mononuclear cells. These results show the potential therapeutic benefits of targeting Rac1 pathway in hematopoietic malignancies.

10.
Medicina (B Aires) ; 77(6): 497-504, 2017.
Article in Spanish | MEDLINE | ID: mdl-29223942

ABSTRACT

Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , rho GTP-Binding Proteins/antagonists & inhibitors , Humans , Neoplasms/enzymology , rho GTP-Binding Proteins/physiology
11.
Medicina (B.Aires) ; 77(6): 497-504, dic. 2017. ilus
Article in Spanish | LILACS | ID: biblio-894528

ABSTRACT

Las Rho GTPasas son una familia de proteínas que actúan como interruptores moleculares en diversas vías de señalización coordinando la regulación de distintos procesos celulares. La desregulación de dichas proteínas se vincula con transformación maligna y progresión tumoral en distintos tipos de cáncer. Por estos motivos, en los últimos años las Rho GTPasas fueron postuladas como blancos moleculares interesantes. En este trabajo describimos las distintas estrategias estudiadas utilizando a las Rho GTPasas como blanco y su grado de avance, mostrando una estrategia novedosa para el tratamiento del cáncer.


Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.


Subject(s)
Humans , rho GTP-Binding Proteins/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , rho GTP-Binding Proteins/physiology , Neoplasms/enzymology
12.
Onco Targets Ther ; 7: 2021-33, 2014.
Article in English | MEDLINE | ID: mdl-25378937

ABSTRACT

Malignant gliomas are characterized by an intrinsic ability to invade diffusely throughout the normal brain tissue. This feature contributes mainly to the failure of existing therapies. Deregulation of small GTPases signaling, in particular Rac1 activity, plays a key role in the invasive phenotype of gliomas. Here we report the effect of ZINC69391, a specific Rac1 inhibitor developed by our group, on human glioma cell lines LN229 and U-87 MG. ZINC69391 is able to interfere with the interaction of Rac1 with Dock180, a relevant Rac1 activator in glioma invasion, and to reduce Rac1-GTP levels. The kinase Pak1, a downstream effector of Dock180-Rac1 signaling, was also downregulated upon ZINC69391 treatment. ZINC69391 reduced cell proliferation, arrested cells in G1 phase, and triggered apoptosis in glioma cells. Importantly, ZINC69391 dramatically affected cell migration and invasion in vitro, interfering with actin cytoskeleton dynamics. We also evaluated the effect of analog 1A-116, a compound derived from ZINC69391 structure. 1A-116 showed an improved antiproliferative and antiinvasive activity on glioma cells. These findings encourage further preclinical testing in clinically relevant animal models.

13.
Anticancer Agents Med Chem ; 14(6): 840-51, 2014.
Article in English | MEDLINE | ID: mdl-24066799

ABSTRACT

Rho GTPases play a key role in the regulation of multiple essential cellular processes, including actin dynamics, gene transcription and cell cycle progression. Aberrant activation of Rac1, a member of Rho family of small GTPases, is associated with tumorigenesis, cancer progression, invasion and metastasis. Particularly, Rac1 is overexpressed and hyperactivated in highly aggressive breast cancer. Thus, Rac1 appears to be a promising and relevant target for the development of novel anticancer drugs. We identified the novel Rac1 inhibitor ZINC69391 through a docking-based virtual library screening targeting Rac1 activation by GEFs. This compound was able to block Rac1 interaction with its GEF Tiam1, prevented EGF-induced Rac1 activation and inhibited cell proliferation, cell migration and cell cycle progression in highly aggressive breast cancer cell lines. Moreover, ZINC69391 showed an in vivo antimetastatic effect in a syngeneic animal model. We further developed the novel analog 1A-116 by rational design and showed to be specific and more potent than the parental compound in vitro and interfered Rac1-P-Rex1 interaction. We also showed an enhanced in vivo potency of 1A-116 analog. These results show that we have developed novel Rac1 inhibitors that may be used as a novel anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Design , Guanidines/pharmacology , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Pyrimidines/pharmacology , Signal Transduction/drug effects , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Guanidines/chemical synthesis , Guanidines/chemistry , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Mice , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , rac1 GTP-Binding Protein/metabolism
14.
Medicina (B Aires) ; 70(6): 555-64, 2010.
Article in Spanish | MEDLINE | ID: mdl-21163747

ABSTRACT

Rho GTPases are a key protein family controlling the transduction of external signals to cytoplasmatic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases. The aim of this review is to describe the cellular functions regulated by these proteins with focus on the molecular mechanism involved. We also address the role of Rho GTPases in the development of different human diseases such as cancer. Finally, we describe different experimental therapeutic strategies with Rho GTPases as molecular targets.


Subject(s)
Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , rho GTP-Binding Proteins/therapeutic use , Antineoplastic Agents/therapeutic use , Autoimmune Diseases/drug therapy , Humans , rho GTP-Binding Proteins/physiology
15.
Medicina (B.Aires) ; 70(6): 555-564, dic. 2010. ilus, tab
Article in Spanish | LILACS | ID: lil-633805

ABSTRACT

Las Rho GTPasas son una familia de proteínas clave en la transmisión de señales provenientes del exterior celular hacia efectores intracelulares tanto citoplasmáticos como nucleares. En los últimos año ha habido un desarrollo vertiginoso de múltiples herramientas genéticas y farmacológicas, lo que ha permitido establecer de manera mucho más precisa las funciones específicas de estas proteínas. El objetivo de la presente revisión es hacer foco en las múltiples funciones celulares reguladas por las Rho GTPasas, describiendo en detalle el mecanismo molecular involucrado. Se discute además la participación de estas proteínas en diversas enfermedades humanas haciendo énfasis en su vinculación con el cáncer. Por último, se hace una actualización detallada sobre las estrategias terapéuticas en experimentación que tienen a las Rho GTPasas como blancos moleculares.


Rho GTPases are a key protein family controlling the transduction of external signals to cytoplasmatic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases. The aim of this review is to describe the cellular functions regulated by these proteins with focus on the molecular mechanism involved. We also address the role of Rho GTPases in the development of different human diseases such as cancer. Finally, we describe different experimental therapeutic strategies with Rho GTPases as molecular targets.


Subject(s)
Humans , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , rho GTP-Binding Proteins/therapeutic use , Antineoplastic Agents/therapeutic use , Autoimmune Diseases/drug therapy , rho GTP-Binding Proteins/physiology
16.
Mol Med Rep ; 2(1): 97-102, 2009.
Article in English | MEDLINE | ID: mdl-21475797

ABSTRACT

The statins, a family of cholesterol-lowering drugs, are known to block the formation of isoprenoids. They thus affect the small GTPase Rho, which requires attachment to cell membranes for proper signaling activity. Chimaerins are GTPase-activating proteins (GAPs) that accelerate GTP hydrolysis from Rac, another GTPase of the same family. We explored the cooperative antitumor effects of the overexpression of ß2-chimaerin in combination with statins. F3II mouse mammary carcinoma cells transfected with the ß2-chimaerin GAP domain exhibiting low intracellular levels of active Rac-GTP were exposed in vitro to a panel of statins. Transfectants were significantly more sensitive to the cytostatic effects of lovastatin, simvastatin, atorvastatin and rosuvastatin than untransfected F3II cells with high Rac-GTP levels. Transfected tumor cells also showed a higher sensitivity for detachment from the substrate and for apoptosis after statin exposure. We further checked the cytostatic effect of statins in combination with azathioprine, a compound that specifically blocks Rac1 activation. Combined treatment with simvastatin and azathioprine demonstrated an enhanced growth-inhibitory effect on control F3II cells. Our data suggest that the combination of statins with a reduction in active Rac levels can produce a cooperative antitumor effect on breast cancer cells.

17.
J Bacteriol ; 190(21): 7209-18, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18776009

ABSTRACT

Burkholderia cenocepacia is a member of the Burkholderia cepacia complex, a group of metabolically versatile bacteria that have emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Previously a screen of transposon mutants in a rat pulmonary infection model identified an attenuated mutant with an insertion in paaE, a gene related to the phenylacetic acid (PA) catabolic pathway. In this study, we characterized gene clusters involved in the PA degradation pathway of B. cenocepacia K56-2 in relation to its pathogenicity in the Caenorhabditis elegans model of infection. We demonstrated that targeted-insertion mutagenesis of paaA and paaE, which encode part of the putative PA-coenzyme A (CoA) ring hydroxylation system, paaZ, coding for a putative ring opening enzyme, and paaF, encoding part of the putative beta-oxidation system, severely reduces growth on PA as a sole carbon source. paaA and paaE insertional mutants were attenuated for virulence, and expression of paaE in trans restored pathogenicity of the paaE mutant to wild-type levels. Interruption of paaZ and paaF slightly increased virulence. Using gene interference by ingested double-stranded RNA, we showed that the attenuated phenotype of the paaA and paaE mutants is dependent on a functional p38 mitogen-activated protein kinase pathway in C. elegans. Taken together, our results demonstrate that B. cenocepacia possesses a functional PA degradation pathway and that the putative PA-CoA ring hydroxylation system is required for full pathogenicity in C. elegans.


Subject(s)
Burkholderia cepacia/genetics , Caenorhabditis elegans/microbiology , Phenylacetates/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia cepacia/metabolism , Burkholderia cepacia/pathogenicity , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Intestines/microbiology , Models, Genetic , Molecular Sequence Data , Multigene Family/genetics , Mutagenesis, Insertional , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...