Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuroscience ; 210: 82-98, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22406416

ABSTRACT

Neural precursor cells (NPCs) provide a cellular model to compare transduction efficiency and toxicity for a series of recombinant adeno-associated viruses (rAAVs). Results led to the choice of rAAV9 as a preferred candidate to transduce NPCs for in vivo transplantation. Importantly, transduction promoted a neuronal phenotype characterized by neurofilament M (NFM) with a concomitant decrease in the embryonic marker, nestin, without significant change in glial fibrillary acidic protein (GFAP). In marked contrast to recent studies for induced pluripotent stem cells (iPSCs), exposure to rAAVs is non-immunogenic and these do not result in genetic abnormalities, thus bolstering the earlier use of NPCs such as those isolated from E13 murine cells for clinical applications. Mechanisms of cellular interactions were explored by treatment with genistein, a pan-specific inhibitor of protein receptor tyrosine kinases (PRTKs) that blocked the transduction and differentiation, thus implying a central role for this pathway for inducing infectivity along with observed phenotypic changes and as a method for drug design. Implantation of transduced NPCs into adult mouse hippocampus survived up to 28 days producing a time line for targeting or migration to dentate gyrus and CA3-1 compatible with future clinical applications. Furthermore, a majority showed commitment to highly differentiated neuronal phenotypes. Lack of toxicity and immune response of rAAVs plus ability for expansion of NPCs in vitro auger well for their isolation and suggest potential therapeutic applications in repair or replacement of diseased neurons in neurodegeneration.


Subject(s)
Dependovirus/genetics , Genetic Vectors/physiology , Neural Stem Cells/cytology , Transduction, Genetic/methods , Animals , Cell Differentiation , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neural Stem Cells/metabolism , Neurofilament Proteins/biosynthesis , Phenotype , Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...