Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790850

ABSTRACT

Currently, Bixa orellana L. extracts are used as a color source in the food, pharmaceutical, and cosmetic industries because they are important as a potential source of antioxidant activity. The extraction is carried out by conventional methods, using alkaline solutions or organic solvents. These extraction methods do not take advantage of the lipid fraction of annatto (Bixa orellana L.) seeds, and the process is not friendly to the environment. In this work, the objective was to obtain an extract rich in nutraceuticals (bixin and tocols) of high antioxidant power from Peruvian annatto seeds as a potential source for a functional food or additive in the industry using supercritical fluid extraction (SFE). Experiments related to extraction yield, bixin, tocotrienols, tocopherols, and antioxidant activity were carried out. The SFE was performed at 40 °C, 50 °C, and 60 °C, and 100, 150, and 250 bar with 0.256 kg/h carbon dioxide as the supercritical solvent (solvent-to-feed ratio of 10.2). Supercritical extraction at 60 °C and 250 bar presented the best results in terms of global extraction yield of 1.40 ± 0.01 g/100 g d.b., extract concentration of 0.564 ± 0.005 g bixin/g extract, 307.8 mg α-tocotrienol/g extract, 39.2 mg ß-tocotrienol/g extract, 2 mg γ-tocopherol/g extract, and IC50 of 989.96 µg extract/mL. Economical evaluation showed that 60 °C, 250 bar, and 45 min presented the lowest cost of manufacturing (2 × 2000 L, COM of USD 212.39/kg extract). This extract is a potential source for functional food production.

2.
Foods ; 11(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35741966

ABSTRACT

The spontaneous fermentation process of Criollo cocoa is studied for its importance in the development of chocolate aroma precursors. This research supports the importance of spontaneous fermentation, which was studied through the crystallization behavior and polymorphisms of cocoa butter (CB), the most abundant component of chocolate that is responsible for its quality physical properties. The k-means technique was used with the CB crystallization kinetics parameters to observe the division of the process during the first stage (day 0-3). The experimental crystallization time was 15.78 min and the second stage (day 4-7) was 17.88 min. The Avrami index (1.2-2.94) showed that the CB crystallizes in the form of a rod/needle/fiber or plate throughout the process. CB produced metastable crystals of polyforms ß1' and ß2'. Three days of fermentation are proposed to generate Criollo cocoa beans with acceptable CB crystallization times.

3.
Foods ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34945652

ABSTRACT

Cocoa butter (CB) is an ingredient traditionally used in the manufacturing of chocolates, but its availability is decreasing due to its scarcity and high cost. For this reason, other vegetable oils, known as cocoa butter equivalents (CBE), are used to replace CB partially or wholly. In the present work, two Peruvian vegetable oils, coconut oil (CNO) and sacha inchi oil (SIO), are proposed as novel CBEs. Confocal Raman microscopy (CRM) was used for the chemical differentiation and polymorphism of these oils with CB based on their Raman spectra. To analyze their miscibility, two types of blends were prepared: CB with CNO, and CB with SIO. Both were prepared at 5 different concentrations (5%, 15%, 25%, 35%, and 45%). Raman mapping was used to obtain the chemical maps of the blends and analyze their miscibility through distribution maps, histograms and relative standard deviation (RSD). These values were obtained with multivariate curve resolution-alternating least squares. The results show that both vegetable oils are miscible with CB at high concentrations: 45% for CNO and 35% for SIO. At low concentrations, their miscibility decreases. This shows that it is possible to consider these vegetable oils as novel CBEs in the manufacturing of chocolates.

4.
Antioxidants (Basel) ; 9(2)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050504

ABSTRACT

Cocoa beans are the main raw material for the manufacture of chocolate and are currently gaining great importance due to their antioxidant potential attributed to the total phenolic content (TPC) and the monomeric flavan-3-ols (epicatechin and catechin). The objective of this study was to determine the degradation kinetics parameters of TPC, epicatechin, and catechin during the roasting process of Criollo cocoa for 10, 20, 30, 40, and 50 min at 90, 110, 130, 150, 170, 190, and 200 °C. The results showed a lower degradation of TPC (10.98 ± 6.04%) and epicatechin (8.05 ± 3.01%) at 130 °C and 10 min of roasting, while a total degradation of epicatechin and a 92.29 ± 0.06% degradation of TPC was obtained at 200 °C and 50 min. Reaction rate constant (k) and activation energy (Ea) were 0.02-0.10 min-1 and 24.03 J/mol for TPC and 0.02-0.13 min-1 and 22.51 J/mol for epicatechin, respectively. Degradation kinetics of TPC and epicatechin showed first-order reactions, while the catechin showed patterns of formation and degradation.

5.
Heliyon ; 5(1): e01157, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30775565

ABSTRACT

There are three main genetic varieties of cocoa (Theobroma cacao L) used in chocolate making: Forastero, Trinitario and Criollo, which are distinguished by their aroma, an attribute that determines their quality. Criollo cocoa is of the highest quality and is used in the manufacture of fine chocolates because of its fruity aroma. The aroma of Criollo cocoa is defined by volatile compounds such as pyrazines and aldehydes, which are formed during roasting of the bean, from aroma precursors (reducing sugars and free amino acids) that are generated inside the bean via enzymatic reactions during fermentation; for this reason, fermentation is the most important process in the value chain. This review discusses the production of aroma precursors of Criollo and Forastero cocoa by studying the kinetics of spontaneous fermentation and the role of starter cultures to produce aroma precursors. Fine aroma precursors produced in the pulp during the fermentation phase will migrate into the bean when it's permeability is improved and then retained during the drying phase. Diffusion of aroma precursors into the cocoa bean may be possible, this process is mathematically characterized by the coefficient of molecular diffusion D, which describe the process of mass transfer via Fick's Second Law. The current state of knowledge is analyzed based on existing research and reports some gaps in the literature, suggesting future research that will be necessary for a better understanding of cocoa fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...