Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985284

ABSTRACT

Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.

2.
J Am Chem Soc ; 143(20): 7655-7670, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33988982

ABSTRACT

Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.


Subject(s)
Antibodies/immunology , Aptamers, Nucleotide/immunology , Neoplasms/immunology , Antibodies/chemistry , Aptamers, Nucleotide/chemistry , Humans , Neoplasms/therapy
3.
Microbiology (Reading) ; 163(7): 940-949, 2017 07.
Article in English | MEDLINE | ID: mdl-28721850

ABSTRACT

Naegleria fowleri and Naegleria gruberi belong to the free-living amoebae group. It is widely known that the non-pathogenic species N. gruberi is usually employed as a model to describe molecular pathways in this genus, mainly because its genome has been recently described. However, N. fowleri is an aetiological agent of primary amoebic meningoencephalitis, an acute and fatal disease. Currently, the most widely used drug for its treatment is amphotericin B (AmB). It was previously reported that AmB has an amoebicidal effect in both N. fowleri and N. gruberi trophozoites by inducing morphological changes that resemble programmed cell death (PCD). PCD is a mechanism that activates morphological, biochemical and genetic changes. However, PCD has not yet been characterized in the genus Naegleria. The aim of the present work was to evaluate the typical markers to describe PCD in both amoebae. These results showed that treated trophozoites displayed several parameters of apoptosis-like PCD in both species. We observed ultrastructural changes, an increase in reactive oxygen species, phosphatidylserine externalization and a decrease in intracellular potassium, while DNA degradation was evaluated using the TUNEL assay and agarose gels, and all of these parameters are related to PCD. Finally, we analysed the expression of apoptosis-related genes, such as sir2 and atg8, in N. gruberi. Taken together, our results showed that AmB induces the morphological, biochemical and genetic changes of apoptosis-like PCD in the genus Naegleria.


Subject(s)
Amphotericin B/pharmacology , Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Central Nervous System Protozoal Infections/parasitology , Naegleria fowleri/drug effects , Naegleria/drug effects , Naegleria/cytology , Naegleria/genetics , Naegleria/growth & development , Naegleria fowleri/cytology , Naegleria fowleri/genetics , Naegleria fowleri/growth & development , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism , Trophozoites/drug effects , Trophozoites/growth & development
4.
Parasitol Res ; 116(1): 303-312, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27796560

ABSTRACT

Members of the Naegleria genus are free-living amoebae, and the only pathogenic specie described to date for humans is N. fowleri. However, as the complete genome of this specie has not been reported, non-pathogenic N. gruberi is employed to describe molecular pathways in N. fowleri. Regardless, certain mechanisms, such as autophagy, have not yet been characterized in N. gruberi. Autophagy is involved in different cellular processes in some protozoa, including the recycling of unnecessary organelles, development, and cell differentiation. In this work, we characterized autophagy in N. gruberi using the specific inducer rapamycin. The formation of autophagy vacuoles in treated trophozoites was observed by ultrastructural analysis, and real time quantitative PCR demonstrated overexpression of the atg8 gene. In addition, we detected an increase in the vacuolar acidification of treated amoebae using the LysoTracker. Finally, confocal microscopy was utilized to identify Atg8 protein signal in the cytoplasm of N. gruberi trophozoites induced with rapamycin and even in trophozoites induced to encyst. In conclusion, N. gruberi possesses an Atg8 protein homolog that is overexpressed during the autophagic mechanism induced by rapamycin and also during encystation of this free-living amoeba.


Subject(s)
Autophagy-Related Protein 8 Family/physiology , Autophagy/physiology , Gene Expression Regulation/physiology , Naegleria , Animals , Anti-Bacterial Agents/pharmacology , Naegleria/ultrastructure , Sirolimus/pharmacology , Trophozoites , Ubiquitin
5.
J Med Microbiol ; 65(9): 885-896, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27381464

ABSTRACT

It has been 50 years since the first case of primary amoebic meningoencephalitis (PAM), an acute and rapidly fatal disease of the central nervous system (CNS), was reported in Australia. It is now known that the aetiological agent of PAM is Naegleria fowleri, an amoeba that is commonly known as 'the brain-eating amoeba'. N. fowleri infects humans of different ages who are in contact with water contaminated with this micro-organism. N. fowleri is distributed worldwide and is found growing in bodies of freshwater in tropical and subtropical environments. The number of PAM cases has recently increased, and the rate of recovery from PAM has been estimated at only 5 %. Amphotericin B has been used to treat patients with PAM. However, it is important to note that there is no specific treatment for PAM. Moreover, this amoeba is considered a neglected micro-organism. Researchers have exerted great effort to design effective drugs to treat PAM and to understand the pathogenesis of PAM over the past 50 years, such as its pathology, molecular and cellular biology, diagnosis and prevention, and its biological implications, including its pathogenic genotypes, its distribution and its ecology. Given the rapid progression of PAM and its high mortality rate, it is important that investigations continue and that researchers collaborate to gain better understanding of the pathogenesis of this disease and, consequently, to improve the diagnosis and treatment of this devastating infection of the CNS.

SELECTION OF CITATIONS
SEARCH DETAIL
...