Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 2058-2066, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297743

ABSTRACT

Lenses with a tunable focus are highly desirable but remain a challenge. Here, we demonstrate a microwave varifocal meta-lens based on the Alvarez lens principle, consisting of two mechanically movable tri-layer metasurface phase plates with reversed cubic spatial profiles. The manufactured multilayer Alvarez meta-lens enables microwave beam collimation/focusing at frequencies centered at 7.5 GHz, and shows one octave focal length tunability when transversely translating the phase plates by 8 cm. The measurements reveal a gain enhancement up to 15 dB, 3-dB beam width down to 3.5∘, and relatively broad 3-dB bandwidth of 3 GHz. These advantageous characteristics, along with its simplicity, compactness, and lightweightness, make the demonstrated flat Alvarez meta-lens suitable for deployment in many microwave systems.

2.
Nat Commun ; 11(1): 1469, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193393

ABSTRACT

Emerging photonic functionalities are mostly governed by the fundamental principle of Lorentz reciprocity. Lifting the constraints imposed by this principle could circumvent deleterious effects that limit the performance of photonic systems. Most efforts to date have been limited to waveguide platforms. Here, we propose and experimentally demonstrate a spatio-temporally modulated metasurface capable of complete violation of Lorentz reciprocity by reflecting an incident beam into far-field radiation in forward scattering, but into near-field surface waves in reverse scattering. These observations are shown both in nonreciprocal beam steering and nonreciprocal focusing. We also demonstrate nonreciprocal behavior of propagative-only waves in the frequency- and momentum-domains, and simultaneously in both. We develop a generalized Bloch-Floquet theory which offers physical insights into Lorentz nonreciprocity for arbitrary spatial phase gradients, and its predictions are in excellent agreement with experiments. Our work opens exciting opportunities in applications where free-space nonreciprocal wave propagation is desired.

3.
Opt Express ; 26(13): 17669-17679, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119577

ABSTRACT

Arrays of dielectric cylinders support two fundamental dipole active eigenmodes, which can be manipulated to elicit a variety of electromagnetic responses in all-dielectric metamaterials. Dissipation is a critical parameter in determining functionality; the present work varies material loss to explore the rich electromagnetic response of this class of metasurface. Four experimental cases are investigated which span electromagnetic response ranging from Huygens surfaces with transmissivity T = 94%, and phase ϕS21 = 235°, to metasurfaces which absorb 99.96% of incident energy. We find perfect absorption to be analogous to the driven damped harmonic oscillator, with critical damping occurring at resonance. With high phase contrast, transmission, and absorption all accessible from a single system, we present a uniquely diverse all-dielectric system.

4.
Opt Express ; 24(6): 6783-92, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136864

ABSTRACT

Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

5.
Nanomedicine ; 11(7): 1667-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25959926

ABSTRACT

We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. FROM THE CLINICAL EDITOR: Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy.


Subject(s)
Early Detection of Cancer , Epithelial Cells/ultrastructure , Microscopy, Atomic Force , Uterine Cervical Neoplasms/diagnosis , Cell Line, Tumor , Disease Progression , Epithelial Cells/pathology , Female , Fractals , Human papillomavirus 16/pathogenicity , Humans , Neoplasm Staging , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...