Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940846

ABSTRACT

DNA damage is one of the most important effects induced by chemical agents. We report a comparative analysis of DNA fragmentation on three different cell lines using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, generally applied to detect apoptosis. Our approach combines cytogenetic techniques and investigation in detached cellular structures, recovered from the culture medium with the aim to compare the DNA fragmentation of three different cell line even beyond the cells adherent to substrate. Consequently, we detect any fragmentation points on single chromosomes, whole nuclei and other cellular structures. Cells were exposed to resveratrol (RSV) and doxorubicin (Doxo), in single and combined treatments. Control and treated astrocytes showed DNA damage in condensed nuclei and detached structures. Caco-2 cells showed fragmented DNA only after Doxo-treatment, while controls showed fragmented chromosomes, indicating DNA damage in replicating cells. MDA-MB-231 cells showed nuclear condensation and DNA fragmentation above all after RSV-treatment and related to detached structures. This model proved to perform a grading of genomic instability (GI). Astrocytes show a hybrid level of GI. Caco-2 cells showed fragmented metaphase chromosomes, proving that the DNA damage was transmitted to the daughter cells probably due to an absence of DNA repair mechanisms. Instead, MDA-MB-231 cells showed few or no fragmented metaphase, suggesting a probable activation of DNA repair mechanisms. By applying this alternative approach of TUNEL test, we obtained data that can more specifically characterize DNA fragmentation for a suitable application in various fields.

2.
Genes (Basel) ; 14(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37239349

ABSTRACT

Gliomas are the prevalent forms of brain cancer and derive from glial cells. Among them, astrocytomas are the most frequent. Astrocytes are fundamental for most brain functions, as they contribute to neuronal metabolism and neurotransmission. When they acquire cancer properties, their functions are altered, and, in addition, they start invading the brain parenchyma. Thus, a better knowledge of transformed astrocyte molecular properties is essential. With this aim, we previously developed rat astrocyte clones with increasing cancer properties. In this study, we used proteomic analysis to compare the most transformed clone (A-FC6) with normal primary astrocytes. We found that 154 proteins are downregulated and 101 upregulated in the clone. Moreover, 46 proteins are only expressed in the clone and 82 only in the normal cells. Notably, only 11 upregulated/unique proteins are encoded in the duplicated q arm of isochromosome 8 (i(8q)), which cytogenetically characterizes the clone. Since both normal and transformed brain cells release extracellular vesicles (EVs), which might induce epigenetic modifications in the neighboring cells, we also compared EVs released from transformed and normal astrocytes. Interestingly, we found that the clone releases EVs containing proteins, such as matrix metalloproteinase 3 (MMP3), that can modify the extracellular matrix, thus allowing invasion.


Subject(s)
Brain Neoplasms , Glioma , Rats , Animals , Proteomics , Glioma/genetics , Glioma/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain/metabolism , Astrocytes/metabolism , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...