Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 141: 73-83, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29028533

ABSTRACT

The synthesis, cytotoxicity, anti-leishmanial and anti-trypanosomal activities of twelve triclosan-caffeic acid hybrids are described herein. The structure of the synthesized products was elucidated by a combination of spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Eight compounds were active against L. (V) panamensis (18-23, 26 and 30) and eight of them against T. cruzi (19-22, 24 and 28-30) with EC50 values lower than 40 µM. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Esters 19 and 21 were the most active compounds for both L. (V) panamensis and T. cruzi with 3.82 and 11.65 µM and 8.25 and 8.69 µM, respectively. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Most of the compounds showed antiprotozoal activity and with exception of 18, 26 and 28, the remaining compounds were toxic for mammalian cells, yet they have potential to be considered as candidates for anti-trypanosomal and anti-leishmanial drug development. The activity is dependent on the length of the alkyl linker with compound 19, bearing a four-carbon alkyl chain, the most performing hybrid. In general, hydroxyl groups increase both activity and cytotoxicity and the presence of the double bond in the side chain is not decisive for cytotoxicity and anti-protozoal activity.


Subject(s)
Antiprotozoal Agents/pharmacology , Caffeic Acids/pharmacology , Leishmania/drug effects , Triclosan/pharmacology , Trypanosoma cruzi/drug effects , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Caffeic Acids/chemical synthesis , Caffeic Acids/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Triclosan/chemical synthesis , Triclosan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...