Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 404(Pt B): 134675, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36323027

ABSTRACT

Waxy (WX) and high-amylose (HA) wheat flours have interesting functional and/or nutritional characteristics, but low technological properties compared to regular wheat. Here a set of three wheat lines, having different amylose content but sharing the same varietal background, were compared to shed light on the role of the amylose/amylopectin ratio on the protein conformational changes that lead to gluten formation. Despite the absence of differences in their protein profile, as also confirmed by thiolomic approaches, both WX and HA lines developed a weaker gluten than the control sample. The altered amylose/amylopectin ratio exerts a matrix effect establishing a competition for water with proteins, leading to a different protein structure and three-dimensional organization of the gluten network. These results add a piece to the understanding of the molecular aspects that oversee matrix effects on gluten formation in wheat, which description can be helpful for a rational optimization of the transformation process.


Subject(s)
Amylose , Starch Synthase , Amylose/chemistry , Amylopectin/chemistry , Starch Synthase/metabolism , Glutens/metabolism , Triticum/chemistry , Starch/chemistry
2.
Insects ; 13(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35735883

ABSTRACT

The recent socio-economic situation requires producers to change the composition of basic foods. The aim of this study was to assess the technological properties of wheat flour enriched with cricket powder (CP) (at 5%, 10%, and 20% levels) for the development of bread and pasta. The hydration (i.e., water absorption capacity, oil absorption capacity, water absorption index, water solubility index, and swelling power), foaming (i.e., foaming capacity and stability),emulsifying (emulsifying activity and emulsion stability), and rheological (during gluten aggregation, mixing, extension, and leavening) properties were investigated. Finally, bread and fresh pasta were prepared and characterized. Emulsifying activity, stability, and foaming capacity decreased in the presence of CP, whereas foaming stability and water solubility increased. The results on dough rheology highlighted the need to increase the amount of water, and to decrease the mixing and leavening time, to keep an acceptable bread volume. Indeed, 10% CP enrichment led to a product characterized by a similar volume and crumb hardness to the control (wheat flour). Despite the decrease in extensibility caused by CP, it was possible to produce fresh pasta enriched with CP, with the best cooking behavior obtained at a 5% replacement level.

3.
Foods ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34681334

ABSTRACT

Despite being considered a climate-resilient crop, sorghum is still underutilized in food processing because of the limited starch and protein functionality. For this reason, the objective of this study was to investigate the effect of sprouting time on sorghum functional properties and the possibility to exploit sprouted sorghum in bread making. In this context, red sorghum was sprouted for 24, 36, 48, 72, and 96 h at 27 °C. Sprouting time did not strongly affect the sorghum composition in terms of total starch, fiber, and protein contents. On the other hand, the developed proteolytic activity had a positive effect on oil-absorption capacity, pasting, and gelation properties. Conversely, the increased α-amylase activity in sprouted samples (≥36 h) altered starch functionality. As regards sorghum-enriched bread, the blends containing 48 h-sprouted sorghum showed high specific volume and low crumb firmness. In addition, enrichment in sprouted sorghum increased both the in vitro protein digestibility and the slowly digestible starch fraction of bread. Overall, this study showed that 48 h-sprouted sorghum enhanced the bread-making performance of wheat-based products.

4.
Foods ; 9(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752209

ABSTRACT

Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 µm), whereas RWFs showed a bimodal distribution with large (>1000 µm) and fine (<250 µm) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa).

5.
Foods ; 9(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121490

ABSTRACT

This research investigated the effect of sprouting on wheat bran. Bran from un-sprouted (BUW) and sprouted (BSW) wheat were characterized in terms of chemical composition, enzymatic activities, and hydration properties. In addition, the rheological properties (using GlutoPeak, Farinograph, Extensograph, and Rheofermentometer tests) and bread-making performance (color, texture, volume of bread) of wheat doughs enriched in bran at 20% replacement level were assessed. Sprouting process caused a significant decrease in phytic acid (~20%), insoluble dietary fiber (~11%), and water holding capacity (~8%), whereas simple sugars (~133%) and enzymatic activities significantly increased after processing. As regards the gluten aggregation kinetics, the BSW-blend profile was more similar to wheat than BUW-blend, indicating changes in the fiber and gluten interactions. BSW led to a worsening of the mixing and leavening properties, instead, no significant changes in extensibility were observed. Finally, BSW improved bread volume (~10%) and crumb softness (~52%). Exploiting bran from sprouted wheat might be useful to produce bread rich in fiber with enhanced characteristics.

6.
J Sci Food Agric ; 100(6): 2453-2459, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31953837

ABSTRACT

BACKGROUND: Pre-harvest sprouting of wheat is viewed negatively because of the high level of enzymatic activity, which leads to a deterioration in the bread-making performance of the related flours. On the other hand, improvements in bread properties (i.e. volume and crumb softness) are reported when sprouted wheat under controlled conditions is used in mixtures with a conventional unsprouted flour. However, knowledge about the effects of sprouting on gluten functionality and its relationship with bread features is still limited, especially in the case of whole wheat flour. RESULTS: Under the conditions applied in this study (48 h, 20 °C and 90% relative humidity), proteins of sprouted wheat were still able to aggregate, even if changes in gluten aggregation kinetics suggested gluten weakening. On the other hand, sprouting led to an increase in gluten stretching ability, suggesting an increase in dough extensibility. In the dough system, sprouting was responsible for a decrease in water absorption, development time, and stability during mixing. However, when the values for development time and water absorption indicated by the Farinograph® were followed carefully, sprouting improved bread height (~20%), specific volume (~15%), and crumb softness (~200% after 24 h of storage), even when whole wheat flour was used. CONCLUSION: It is possible to produce bread with improved volume and crumb softness using whole wheat flour from sprouted kernels. Thus, sprouting can be exploited as a pre-treatment to improve the bread-making performance of fiber-enriched systems. © 2020 Society of Chemical Industry.


Subject(s)
Bread , Food Handling/methods , Triticum , Flour , Glutens/chemistry , Water/chemistry
7.
J Food Sci Technol ; 54(10): 3307-3313, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28974816

ABSTRACT

The combined effects of grain germination and of subsequent fermentation on the physicochemical properties of sorghum flour were investigated by studying the structural changes occurring in the starch and protein fractions and by assessing their effects on physical properties of the resulting materials most relevant to end use. The sequential treatments were more effective than either individual treatment in the modification of starch-related properties, whereas modification of the protein components only occurs in the fermentation step, almost regardless of a previous germination step. The resulting profile of physicochemical traits offers several hints as for the suitability of flour from treated sorghum as an ingredient for various types of gluten-free food products, and provides a basis for expanding the use of processed sorghum in applications other than traditional African foods.

SELECTION OF CITATIONS
SEARCH DETAIL
...