Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 128, 2020.
Article in English | MEDLINE | ID: mdl-32153562

ABSTRACT

There are several unmet needs in modern immunology. Among them, vaccines against parasitic diseases and chronic infections lead. Trypanosoma cruzi, the causative agent of Chagas disease, is an excellent example of a silent parasitic invasion that affects millions of people worldwide due to its progression into the symptomatic chronic phase of infection. In search for novel vaccine candidates, we have previously introduced Traspain, an engineered trivalent immunogen that was designed to address some of the known mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different DNA prime/protein boost protocols and characterized the systemic immune response associated with diverse levels of protection. Formulations that include a STING agonist, like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response. Moreover, comparison between them showed that vaccines that were able to prime polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced protection levels in the murine model. These findings contribute to a better knowledge of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a vaccine correlate of protection against the infection.


Subject(s)
Immunity/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Vaccination/methods , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Female , Immunization, Secondary , Male , Mice , Models, Animal , Treatment Outcome
2.
PLoS Negl Trop Dis ; 12(3): e0006384, 2018 03.
Article in English | MEDLINE | ID: mdl-29601585

ABSTRACT

BACKGROUND: Chagas disease, also known as American Trypanosomiasis, is a chronic parasitic disease caused by the flagellated protozoan Trypanosoma cruzi that affects about 8 million people around the world where more than 25 million are at risk of contracting the infection. Despite of being endemic on 21 Latin-American countries, Chagas disease has become a global concern due to migratory movements. Unfortunately, available drugs for the treatment have several limitations and they are generally administered during the chronic phase of the infection, when its efficacy is considered controversial. Thus, prophylactic and/or therapeutic vaccines are emerging as interesting control alternatives. In this work, we proposed Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a new antigen for vaccine development against Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: In a murine model, we analyzed the immune response triggered by different immunization protocols based on Tc80 and evaluated their ability to confer protection against a challenge with the parasite. Immunized mice developed Tc80-specific antibodies which were able to carry out different functions such as: enzymatic inhibition, neutralization of parasite infection and complement-mediated lysis of trypomastigotes. Furthermore, vaccinated mice elicited strong cell-mediated immunity. Spleen cells from immunized mice proliferated and secreted Th1 cytokines (IL-2, IFN-γ and TNF-α) upon re-stimulation with rTc80. Moreover, we found Tc80-specific polyfunctional CD4 T cells, and cytotoxic T lymphocyte activity against one Tc80 MHC-I peptide. Immunization protocols conferred protection against a T. cruzi lethal challenge. Immunized groups showed a decreased parasitemia and higher survival rate compared with non-immunized control mice. Moreover, during the chronic phase of the infection, immunized mice presented: lower levels of myopathy-linked enzymes, parasite burden, electrocardiographic disorders and inflammatory cells. CONCLUSIONS/SIGNIFICANCE: Considering that an early control of parasite burden and tissue damage might contribute to avoid the progression towards symptomatic forms of chronic Chagas disease, the efficacy of Tc80-based vaccines make this molecule a promising immunogen for a mono or multicomponent vaccine against T. cruzi infection.


Subject(s)
Chagas Disease/prevention & control , Protozoan Vaccines/immunology , Serine Endopeptidases/immunology , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/immunology , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Chagas Disease/parasitology , Cytokines/immunology , Immunity, Cellular , Mice , Mice, Inbred BALB C , Parasite Load , Prolyl Oligopeptidases , Protozoan Proteins , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Serine Endopeptidases/genetics , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...