Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(14)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38157558

ABSTRACT

TbxPr1-xAl2are ferrimagnetic materials exhibiting magnetocaloric effect that have gained considerable attention due to their potential use as an alternative in refrigeration, magnetic sensors and in information storage technology. Here using the mean field approach numerical simulations were conducted forx= 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, to analyze selected physical properties, such as x-ray and neutron powder diffraction, magnetization and heat capacity. The simulations successfully reproduced the experimental data providing a comprehensive characterization and improved understanding of this family of compound.

2.
Phys Chem Chem Phys ; 20(9): 6469-6479, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29445821

ABSTRACT

Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s-1, as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

3.
Chem Phys Lipids ; 212: 51-60, 2018 05.
Article in English | MEDLINE | ID: mdl-29366737

ABSTRACT

The characterization of fat components becomes very useful for formulation of shortening, margarines and fat products due to their unique properties of plasticity, texture, solubility, and aeration. However, X-ray diffraction experiments on such materials are usually limited to a qualitative evaluation of the polymorphic properties based only on the characteristic d-spacing peak intensities. In this work, interesting results based on the Rietveld Method have supported both a Quantitative Phase Analysis and Degree of Crystallinity study on industrial and academic appealing samples, such as triacylglycerol standards, fully hydrogenated vegetable oils (hardfats) and cocoa butter. This useful approach to the area of oils and fats can provide valuable information about the polymorphism and its relationship to the application of lipid materials in food science and technology. Here, the discrimination between ß and ß' polymorphs on samples made of mixtures or blended hardfats was attained, and the results have shown a relevant contrast in comparison to a purely qualitative approach. Assessment of amorphous content on cocoa butter samples was achieved by isolating its contribution from the total X-ray diffraction background via mathematical tools during the whole pattern fitting.


Subject(s)
Triglycerides/analysis , X-Ray Diffraction , Crystallization , Dietary Fats/analysis , Plant Oils/analysis
4.
J Synchrotron Radiat ; 13(Pt 6): 435-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17057318

ABSTRACT

Previous work employed X-ray three-beam diffraction techniques to obtain part of the L-arginine hydrochloride monohydrate (L-AHCL.H(2)O) piezoelectric coefficients, namely d(21), d(22), d(23) and d(25). Those coefficients were obtained by measuring the shift in the angular position of a number of secondary reflections as a function of the electric field applied in the [010] piezoelectric direction. In this paper a similar procedure has been used to measure the remaining four piezoelectric coefficients in L-AHCL.H(2)O: with the electric field applied in the [100] direction, d(14) and d(16) were measured; with the electric field applied in the [001] direction, d(34) and d(36) were obtained. Therefore the entire piezoelectric matrix of the L-AHCL.H(2)O crystal has been successfully measured.


Subject(s)
Arginine/chemistry , Arginine/radiation effects , Electrochemistry/methods , Models, Chemical , Transducers , X-Ray Diffraction/methods , Computer Simulation , Elasticity , Electric Conductivity , Materials Testing/methods , Stress, Mechanical
5.
Nat Mater ; 5(10): 802-4, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16951675

ABSTRACT

The magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures. In this work, we report on the properties of Mn(1-x)Fe(x)As that exhibit the colossal effect at ambient pressure. The MCE peak varies from 285 K to 310 K depending on the Fe concentration. Although a large thermal hysteresis is observed, the colossal effect at ambient pressure brings layered magnetic regenerators with huge refrigerating power closer to practical applications around room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...