Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 302(9): R1111-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22378777

ABSTRACT

The specific contribution of each antioxidant enzyme to protection against the reoxygenation-associated oxidative stress after periods of hypoxia is not well understood. We assessed the physiological role of catalase during posthypoxic reoxygenation by the combination of two approaches. First, catalase activity of Nile tilapias (Oreochromis niloticus) was 90% suppressed by intraperitoneal injection of 3-amino-1,2,4-triazole (ATZ, 1g/kg). In ATZ-injected fish, liver GSH levels, oxidative stress markers, and activities of other antioxidant enzymes remained unchanged. Second, animals with depleted catalase activity (or those saline-injected) were subjected to a cycle of severe hypoxia (dissolved O(2) = 0.28 mg/l for 3 h) followed by reoxygenation (0.5 to 24 h). Hypoxia did not induce changes in the above-mentioned parameters, either in saline- or in ATZ-injected animals. Reoxygenation increased superoxide dismutase activity in saline-injected fish, whose levels were similar to ATZ-injected animals. The activities of glutathione S-transferase, selenium-dependent glutathione peroxidase, and total-GPX and the levels of GSH-eq, GSSG, and thiobarbituric acid reactive substances remained unchanged during reoxygenation in both saline- and ATZ-injected fish. The GSSG/GSH-eq ratio in ATZ-injected fish increased at 30 min of reoxygenation compared with saline-injected ones. Reoxygenation also increased carbonyl protein levels in saline-injected fish, whose levels were similar to the ATZ-injected group. Our work shows that inhibition of liver tilapia catalase causes a redox imbalance during reoxygenation, which is insufficient to induce further oxidative stress. This indicates the relevance of hepatic catalase for hypoxia/reoxygenation stress in tilapia fish.


Subject(s)
Antioxidants/metabolism , Catalase/metabolism , Cichlids/physiology , Hypoxia/physiopathology , Liver/metabolism , Oxidative Stress , Animals , Disease Resistance , Enzyme Activation
2.
Comp Biochem Physiol A Mol Integr Physiol ; 151(3): 313-321, 2008 Nov.
Article in English | MEDLINE | ID: mdl-17544307

ABSTRACT

Glutathione reductase (GR) carries out the enzymatic reduction of glutathione disulfide (GSSG) to its reduced form (GSH) at the expense of the reducing power of NADPH. Previous studies have shown that GR from several species is progressively inactivated in the presence of NADPH, but that the mechanism of inactivation (especially in the presence of metals) has not been fully elucidated. We have investigated the involvement of iron ions in the inactivation of yeast (Saccharomyces cerevisiae) GR in the presence of NADPH. Even in the absence of added iron, inactivation of GR was partly blocked by the iron chelators, deferoxamine and ortho-phenanthroline, suggesting the involvement of trace amounts of contaminating iron in the mechanism of inhibition. Exogenously added antioxidants including ethanol, dimethylsulfoxide and 2-deoxyribose did not protect GR against NADPH-induced inactivation, whilst addition of exogenous Fe(II) (but not Fe(III)) potentiated the inactivation. Moreover, removal of oxygen from the medium led to increased inhibition of GR, whereas pre-incubation of the Fe(II)-containing medium for 30 min under normoxic conditions prior to the addition of GR abolished the enzyme inactivation by NADPH. Under these pre-incubation conditions, Fe(II) is fully oxidized to Fe(III) within 1 min. Furthermore, GR that had been previously inactivated in the presence of Fe(II) plus NADPH could be partially reactivated by treatment with ortho-phenanthroline and deferoxamine. In contrast, Fe(III) had no effect on GR reactivation. Together, these results indicate that yeast GR is inactivated by a reductive mechanism mediated by NADPH and Fe(II). According to this mechanism, GR is diverted from its normal redox cycling by the generation of an inactive reduced enzyme form in which both the FAD and thiol groups at the active site are likely in a reduced state.


Subject(s)
Ferrous Compounds/metabolism , Glutathione Reductase/metabolism , NADP/metabolism , Saccharomyces cerevisiae/enzymology , Antioxidants/metabolism , Antioxidants/pharmacology , Deferoxamine/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Ferric Compounds/metabolism , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Iron Chelating Agents/pharmacology , NADP/pharmacology , Phenanthrolines/pharmacology , Reactive Oxygen Species/metabolism
3.
Comp Biochem Physiol C Toxicol Pharmacol ; 140(2): 165-74, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15907762

ABSTRACT

We investigated the regulation of free radical metabolism in Helix aspersa snails during a cycle of 20-day estivation and 24-h arousal in summer in comparison with estivation/arousal in winter-snails. In winter-snails (J. Exp. Biol. 206, 675-685, 2003), we had already observed an increase in the selenium-dependent glutathione-peroxidase (Se-GPX) activity in foot muscle and hepatopancreas and in the contents of hepatopancreas GSH-equivalents (GSH-eq=GSH+2 GSSG) during estivation compared with 24-h aroused snails. Summer-estivation prompted a 3.6-fold increase in Se-GPX activity in hepatopancreas, though not in foot muscle. Total-superoxide dismutase and catalase activities in hepatopancreas decreased (by 30-40%) during summer-estivation; however, no changes occurred in the activities of glutathione reductase, glutathione S-transferase and glucose-6-phosphate dehydrogenase in the two organs. GSH-eq levels were increased (by 54%) in foot muscle during estivation, but were unchanged in hepatopancreas. In contrast with winter-snails, oxidative stress markers (lipid peroxidation, carbonyl protein, and the GSSG/GSH-eq ratio) were unaltered during estivation/arousal in summer. These results demonstrate that seasonality modulates not only the absolute activities/levels of antioxidants (enzymes and GSH-eq) in H. aspersa, but also the regulatory process that controls the snail's antioxidant capacity during estivation/arousal. These results suggest that H. aspersa has an "internal clock" controlling the regulation of free radical metabolism in the different seasons.


Subject(s)
Estivation/physiology , Free Radicals/metabolism , Helix, Snails/metabolism , Animals , Antioxidants/metabolism , Arousal/physiology , Catalase/metabolism , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Lipid Peroxidation , Oxidative Stress/physiology , Seasons , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...