Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641046

ABSTRACT

Double-walled nanoparticles (DWNPs), containing doxorubicin as a model drug, were produced using poly-(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by the solvent evaporation technique. Double-walled microparticles containing doxorubicin were also produced to make possible the examination of the inner morphology and drug distribution using optical and fluorescence microscopy. The produced microparticles present a double-walled structure with doxorubicin solubilized in the PLGA-rich phase. The DWNPs produced present very low initial burst values and a sustained DOX release for at least 90 days with release rates decreasing with the increase in the PLLA amount. Zero-order release kinetics were obtained after day 15. The results support that the PLLA layer acts as a rate control barrier and that the diffusion of doxorubicin from the drug-loaded inner PLGA core can be retarded by an increase in the thickness of the unloaded outer layer. The unloaded double-walled nanoparticles produced were used in in vitro tests with CHO cells and demonstrate that they are nontoxic, while the double-walled nanoparticles loaded with doxorubicin caused a great cellular viability and decreased when tested in vitro.

2.
Polymers (Basel) ; 12(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947904

ABSTRACT

Doxorubicin-loaded PLGA nanoparticles conjugated with a new galactose-based ligand for the specific recognition by human hepatoma cellular carcinoma cells (Hep G2) were successfully produced. The new targeting compound was selected using molecular docking combined with quantum chemical calculations for modelling and comparing molecular interactions among the H1 subunit of the asialoglycoprotein receptor containing the carbohydrate recognition domain and the ligand. The ligand, bis(1-O-ethyl-ß-D-galactopyranosyl)amine, was synthetized, characterized, and subsequently linked to PLGA. Unloaded (PLGA-di-GAL NP) and doxorubicin-loaded (DOX-PLGA-di-GAL NP) nanoparticles were prepared using an emulsion method and characterized. The produced DOX-PLGA-di-GAL NP are spherical in shape with a size of 258 ± 47 nm, a zeta potential of -62.3 mV, and a drug encapsulation efficiency of 83%. The in vitro drug release results obtained show a three-phase release profile. In vitro cell studies confirmed the interaction between Hep G2 cells and PLGA-di-GAL NP. Cell cytotoxicity tests showed that unloaded NP are nontoxic and that DOX-PLGA-di-GAL NP caused a decrease of around 80% in cellular viability. The strategy used in this work to design new targeting compounds represents a promising tool to develop effective hepatocyte targeting drug delivery systems and can be applied to other tissues/organs.

3.
Int J Pharm ; 532(1): 229-240, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28867450

ABSTRACT

A substantial drug release from poly(lactic-co-glycolic) acid (PLGA) micro- and nanoparticles can occur in the first hours of immersion, which is referred to as burst release. A strong burst release (when not intentional) is to be avoided as it decreases the efficacy of the treatment and could be dangerous to the host. In this work we analyze the total amount of drug released during burst and respective kinetics in relation to formulations characteristics, experimental conditions and drug molecular properties in 154 drug release experiments with 41 different drugs by partial least squares (PLS) and decision tree regression. The model created enables to quantify to which degree the physicochemical parameters control the burst release from PLGA particles. Our analysis shows that the amount of drug released during burst is mostly influenced by the formulation characteristics and the synthesis parameters, whereas the drug release kinetics is also influenced by the molecular properties of the drug. The variables that significantly influence the amount and kinetics of the burst release are discussed in detail and compared with findings from other researchers. The final regression models are shown to predict the release profile of a new drug, opening the possibility to be applied to systematically manipulate the burst release by means of designing an optimized drug delivery system.


Subject(s)
Drug Liberation , Lactic Acid/chemistry , Models, Theoretical , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Drug Compounding , Pharmaceutical Preparations/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Regression Analysis
4.
Mol Pharm ; 14(9): 3164-3177, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28836790

ABSTRACT

The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, Tg = -54.3 °C, is in good agreement with the one predicted by the composition dependence of the Tg values determined for menthol:flurbiprofen therapeutic deep eutectic solvents (THEDESs). Nonisothermal crystallization was never observed for neat menthol loaded into silica hosts, which can indicate that menthol rests as a full amorphous/supercooled material inside the pores of the silica matrixes. Menthol mobility was probed by dielectric relaxation spectroscopy, which allowed to identify two relaxation processes in both pore sizes: a faster one associated with mobility of neat-like menthol molecules (α-process), and a slower, dominant one due to the hindered mobility of menthol molecules adsorbed at the inner pore walls (S-process). The fraction of molecular population governing the α-process is greater in the higher (5.9 nm) pore size matrix, although in both cases the S-process is more intense than the α-process. A dielectric glass transition temperature was estimated for each α (Tg,dielc(α)) and S (Tg,dielc(S)) molecular population from the temperature dependence of the relaxation times to 100 s. While Tg,dielc(α) agrees better with the value obtained from the linearization of the Fox equation assuming ideal behavior of the menthol:flurbiprofen THEDES, Tg,dielc(S) is close to the value determined by calorimetry for the silica composites due to a dominance of the adsorbed population inside the pores. Nevertheless, the greater fraction of more mobile bulk-like molecules in the 5.9 nm pore size matrix seems to determine the faster drug release at initial times relative to the 3.2 nm composite. However, the latter inhibits crystallization inside pores since its dimensions are inferior to menthol critical size for nucleation. This points to a suitability of these composites as drug delivery systems in which the drug release profile can be controlled by tuning the host pore size.


Subject(s)
Menthol/chemistry , Silicon Dioxide/chemistry , Calorimetry, Differential Scanning , Crystallization , Flurbiprofen/chemistry , Solvents/chemistry , Transition Temperature
5.
Int J Pharm ; 399(1-2): 80-6, 2010 Oct 31.
Article in English | MEDLINE | ID: mdl-20696228

ABSTRACT

This work aimed at the development of targeted drug delivery systems using nanoparticles fused with antibodies. The antibody anti-human CD8 was coupled onto PLGA nanoparticles, and the ability of these particles to specifically target cells expressing CD8 was studied. The obtained particles were found to be of spherical shape exhibiting a size between 350 and 600 nm. In vitro experiments with different cellular cultures (TE671, CHO and HEK293) using unmodified nanoparticles containing rhodamine have shown that particles were present on their surface within 48 h of incubation. In vitro tests using anti-CD8 conjugated nanoparticles in CHO cell cultures indicated that all transfected cells which express CD8 show these particles on their surface within 1h of incubation. These results demonstrated that, in a shorter time, the produced particles can target cells expressing CD8 on their surface which offers the ability to reduce drug side effects. The antibody-coupled nanoparticles represent a promising approach to improve the efficacy of active targeting for lymphoblastic leukaemia therapy.


Subject(s)
Antibodies, Monoclonal/administration & dosage , CD8 Antigens/immunology , Drug Carriers/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Animals , Antibodies, Monoclonal/immunology , CD8 Antigens/genetics , CHO Cells , Cell Culture Techniques , Cell Line, Tumor , Cricetinae , Cricetulus , Humans , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Microscopy, Phase-Contrast , Polylactic Acid-Polyglycolic Acid Copolymer , Spectroscopy, Fourier Transform Infrared , Surface Properties , Transfection
6.
Int J Pharm ; 328(1): 72-7, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-16971075

ABSTRACT

The micronization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from organic solutions using supercritical antisolvent (SAS) technique has been successfully achieved. SAS experiments were carried out at different operational conditions and microspheres with mean diameters ranging from 3 to 9 microm were obtained. The effect of CO(2) and liquid flow, temperature and pressure on particle size and particle size distribution was evaluated. The microspheres were precipitated from a dichloromethane (DCM) solution. The best process conditions for this mixture were, according to our study, 40 degrees C, 100 bar, 1 mL min(-1) liquid flow and 10 L min(-1) carbon dioxide flow. Experiments with polymers containing different HV percentages were carried out. The powders obtained became more spherical as the HV content decreased.


Subject(s)
Polyesters/chemistry , Calorimetry, Differential Scanning , Carbon Dioxide/chemistry , Chemical Phenomena , Chemistry, Physical , Drug Carriers , Microscopy, Electron, Scanning , Microspheres , Nanoparticles , Particle Size , Pressure , Solutions , Solvents , Temperature
7.
Int J Pharm ; 311(1-2): 50-4, 2006 Mar 27.
Article in English | MEDLINE | ID: mdl-16423476

ABSTRACT

The supercritical antisolvent (SAS) technique was used to prepare ethyl cellulose/methyl cellulose blends, two biocompatible polymers commonly used as drug carriers in controlled delivery systems. Ethyl cellulose is widely used as a drug carrier. The drug release of the delivery devices can be controlled to some extent by addition of a water-soluble or water swellable polymer, such as methyl cellulose. This leads to the solubility enhancement of poorly water-soluble molecules. SAS experiments were carried out at different operational conditions and microspheres with mean diameters ranging from 5 to 30 microm were obtained. The effect of CO(2) and liquid flow, temperature and pressure on particle size and particle size distribution was evaluated. The microspheres were precipitated from a mixture of dichloromethane (DCM) and dimethylsulfoxide (DMSO) (4:1 ratio). The best process conditions for this mixture were according to our study 40 degrees C and 80 bar.


Subject(s)
Cellulose/analogs & derivatives , Chromatography, Supercritical Fluid , Methylcellulose/chemistry , Polymers/chemical synthesis , Cellulose/chemistry , Chemical Precipitation , Dimethyl Sulfoxide/chemistry , Drug Carriers , Methylene Chloride/chemistry , Microspheres , Pressure , Solvents/chemistry , Surface Properties , Technology, Pharmaceutical/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...