Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Vet Microbiol ; 285: 109845, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634288

ABSTRACT

Bovine alpha herpesvirus-5 (BoAHV-5) is related to the development of meningoencephalitis in cattle. Very little is known about the molecular pathways involved in the central nervous system (CNS) damage associated with inflammation during BoHV-5 infection in mice. To better identify the specific immunological pathways triggered by BoAHV-5 infection in mice, we evaluated the mRNA expression of 84 genes involved in innate and adaptive immune responses. We compared gene expression changes in the cerebrum from noninfected and infected mice with BoHV-5 at a 1 × 107 TCID50. Then, we analyzed the association of these genes with neurological signs, neuropathology, and activation of glial cells in response to BoHV-5 infection. Three days after BoAHV-5 infection, increased expression of TNF, IL-2, CXCL10, CXCR3, CCR4, CCL5, IFN-γ, IL-10, IRF7, STAT1, MX1, GATA 3 C3, LIZ2, caspase-1 and IL-1b was found. We also observed the upregulated expression of the CD8a, TBX21 and CD40LG genes and the downregulated expression of the CD4 gene after BoAHV-5 infection. In addition, BoHV-5-infected animals showed higher levels of all the evaluated inflammatory mediators (TNF, IFN-γ and IL-10) on day 3 postinfection. BoAHV-5-infected animals showed neurological changes along with meningoencephalitis, neuropil vacuolation, hemorrhage and reactive gliosis. Astrogliosis and microgliosis, indicated by increased expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), were found throughout the neuropil in infected brains. Moreover, cleaved caspase-3 immunopositive glio-inflammatory cells were visualized around some blood vessels in areas of neuroinflammation in the cerebrum. In agreement on that we found higher cleaved caspase-3 and Iba-1 expression evaluated by western blot analysis in the brains of infected mice compared to control mice. In conclusion, our results revealed.

2.
PLoS Negl Trop Dis ; 17(8): e0011535, 2023 08.
Article in English | MEDLINE | ID: mdl-37540724

ABSTRACT

Endemic in Brazil, visceral leishmaniasis (VL) is a zoonotic infection that is among the most important parasitic diseases transmitted by vectors. Dogs are the main reservoirs of canine leishmaniasis (CanL) and their identification is used in some countries as part of disease prevention and control measures in the canine and human population. In this context, serological tests are necessary, composed of antigens capable of correctly identifying infected dogs, minimizing the number of false-negative cases. This study aimed to identify more immunoreactive peptides derived from two previously described whole proteins (rDyn-1 and rKDDR-plus) and compare their performance to the control antigens rK39 and the crude extract for the detection of dogs infected with L. infantum, especially the asymptomatic ones. The three selected peptides and a mixture of them, along with the rDyn-1, rKDDR-plus, rK39, and crude extract antigens were evaluated using indirect ELISA with sera samples from 186 dogs with CanL, being asymptomatic (n = 50), symptomatic (n = 50), co-infected (n = 19), infected with Babesia sp. (n = 7), Ehrlichia sp. (n = 6), T. cruzi (n = 20) and uninfected (n = 34). The results showed that the rDyn-1 protein and the peptide mixture had the highest sensitivity (100% and 98.32%, respectively) and specificity (97.01 and 98.51, respectively). A high degree of kappa agreement was found for rDyn-1 protein (0.977), mixed peptides (0.965), rKDDR-plus protein (0.953), K-plus peptide 1 (0.930) and Dyn-1 peptide (0.893). The mixture of peptides showed the highest likelihood (65.87). The ELISA using the mixture of peptides and the rDyn-1 protein showed high performance for CanL serodiagnosis. More mix combinations of the peptides and additional extended field tests with a larger sample size are recommended.


Subject(s)
Chagas Disease , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Humans , Dogs , Animals , Antigens, Protozoan , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Peptides , Immunoblotting , Oligopeptides , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Dog Diseases/epidemiology , Antibodies, Protozoan
3.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36679956

ABSTRACT

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

4.
Acta Trop ; 239: 106827, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36610530

ABSTRACT

Visceral leishmaniasis (VL) is a fatal manifestation of an infection caused by intracellular protozoa of the Leishmania genus. In New World countries, VL is classified as a zoonotic disease with domestic dogs acting as its main reservoir. Asymptomatic dogs are as competent to transmit Leishmania to the vectors as symptomatic dogs, however current diagnostic tests are limited and present low sensitivity for this important group. The development of accurate tests is fundamental to the early diagnosis, treatment, and control of canine leishmaniasis. In this study, we investigated the use of a recombinant protein (dynamin-1-like protein, Dyn-1) from L. infantum, as a potential target antigen for leishmaniasis serodiagnosis in both symptomatic and asymptomatic dogs. The antigenic performance of the protein was evaluated by means of ELISA assays using sera from symptomatic (n = 25), asymptomatic (n = 34) and non-infected dogs (n = 36) using ELISA. In addition, sera from dogs experimentally infected with Trypanosoma cruzi (n = 49) and naturally infected with Babesia sp. (n = 8) were tested to evaluate possible cross-reactivity. A crude soluble antigen (CSA) of Leishmania was used as an antigen control and K39 and K26 were used as reference antigens because they are already widely used in commercial tests. rDyn-1-based assay showed the highest sensitivity (97%) compared to the antigens K39 (88%), K26 (86%) and crude extract (95%). The highest specificity among the tests was also obtained with the protein rDyn-1 (94%), compared with the other antigens K39 (81%), K26 (87%), and crude extract (77%). This study showed that the rDyn-1 ELISA assay was able to identify 100% of asymptomatic dogs, establishing its potential as a target for the diagnosis of canine leishmaniasis.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Dogs , Leishmania infantum/genetics , Dynamin I , Antigens, Protozoan/genetics , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Enzyme-Linked Immunosorbent Assay , Serologic Tests/veterinary , Dog Diseases/diagnosis , Dog Diseases/parasitology , Antibodies, Protozoan , Sensitivity and Specificity
5.
Vaccines (Basel) ; 10(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36366357

ABSTRACT

Leishmaniasis is a widespread vector-borne disease in Brazil, with Leishmania (Leishmania) infantum as the primary etiological agent of visceral leishmaniasis (VL). Dogs are considered the main reservoir of this parasite, whose treatment in Brazil is restricted to the use of veterinary medicines, which do not promote a parasitological cure. Therefore, efficient vaccine development is the best approach to Canine Visceral Leishmaniasis (CVL) control. With this in mind, this study used hamsters (Mesocricetus auratus) as an experimental model in an anti-Leishmania preclinical vaccine trial to evaluate the safety, antigenicity, humoral response, and effects on tissue parasite load. Two novel formulations of nanoparticles made from poly(D, L-lactic) acid (PLA) polymer loading Leishmania braziliensis crude antigen (LB) exhibiting two different particle sizes were utilized: LBPSmG (570 nm) and LBPSmP (388 nm). The results showed that the nanoparticles were safe and harmless to hamsters and were antigenic with the induction in LBSap, LBPSmG, and LBPSmG groups of total anti-Leishmania IgG antibodies 30 days after challenge, which persists 200 days in LBSap and LBPSmP. At the same time, a less pronounced hepatosplenomegaly in LBSap, LBPSmG, and LBPSmP was found when compared to control groups, as well as a less pronounced inflammatory infiltrate and granuloma formation in the spleen. Furthermore, significant reductions of 84%, 81%, and 90% were observed in spleen parasite burden accessed by qPCR in the LBSap, LBPSmG, and LBPSmP groups, respectively. In this way, LBSap, LBPSmG, and LBPSmP formulations showed better results in vaccinated and L. infantum-challenged animals in further reducing parasitic load in the spleen and attenuating lesions in liver and splenic tissues. This results in safe, harmless nanoformulation vaccines with significant immunogenic and infection control potential. In addition, animals vaccinated with LBPSmP had an overall reduction in parasite burden in the spleen, indicating that a smaller nanoparticle could be more efficient in targeting antigen-presenting cells.

6.
mBio ; 13(6): e0231922, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36264102

ABSTRACT

Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Animals , Mice , Trypanosoma cruzi/genetics , DNA Copy Number Variations , Genome, Protozoan , Mannose-Binding Protein-Associated Serine Proteases/genetics , Multigene Family , Chagas Disease/parasitology , High-Throughput Nucleotide Sequencing/methods , Mammals/genetics
7.
Microbes Infect ; 24(6-7): 104982, 2022 09.
Article in English | MEDLINE | ID: mdl-35487471

ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas disease (CD), is a heterogeneous species with high genetic and phenotypic diversity. MASP is the second largest multigene family of T. cruzi. The high degree of polymorphism of the family associated with its location at the surface of infective forms of T. cruzi suggests that MASP participates in mechanisms of host-parasite interaction. In this work, MASP members were divided into 7 subgroups based on protein sequence similarity, and one representative member from each subgroup was chosen to be expressed recombinantly. Immunogenicity of recombinant MASP proteins (rMASP) was investigated using different sera panels from T. cruzi infected mice. To mimic a natural condition in which different MASP members are expressed at the same time in the parasite population, a multiplex bead-based flow cytometry assay was also standardized. Results showed that rMASPs are poorly recognized by sera from mice infected with Colombiana strain, whereas sera from mice infected with CL Brener and Y display high reactivity against the majority of rMASPs tested. Flow cytometry showed that MASP recognition profile changes 10 days after infection. Also, multiplex assay suggests that MASP M1 and M2 are more immunogenic than the other MASP members evaluated that may play an immunodominant role during infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Antigenic Variation , Chagas Disease/parasitology , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mice , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism
8.
Microbes Infect ; 24(6-7): 104981, 2022 09.
Article in English | MEDLINE | ID: mdl-35462022

ABSTRACT

Leprosy is an infectious disease influenced by genetic, immunological, and environmental factors. Reduced gene expressions may be associated with the immunological response pattern and leprosy susceptibility. We investigated the direct and indirect effects of Vitamin D Receptor (VDR) and Cathelicidin Antimicrobial Peptide (CAMP) gene expressions on the serum levels of vitamin D, Cathelicidin, and cytokines in newly-diagnosed leprosy patients and post-six-months of multidrug therapy (MDT). Thirty-four leprosy patients were assessed, paucibacillary (PB; n = 14) and multibacillary (MB; n = 20) cases, untreated or having received six months of MDT, 18 healthy controls, and 25 household contacts. VDR and CAMP gene expression levels were strongly correlated to some important cytokines in both, untreated leprosy patients (PB, r = 0.9319; MB, r = 0.9569) and patients who had undergone MDT (PB, r = 0.9667; MB, r = 0.9569). We observed that both gene expressions directly influenced IL-2, IFN-γ, and IL-17F serum levels in leprosy patients compared to the household contacts and healthy individuals. VDR and CAMP gene expressions induced a persistent inflammatory response in PB and MB leprosy patients, even after six months of MDT, to fight the Mycobacterium leprae infection. Due to the persistent inflammatory profile, multidrug therapy is suggested to be maintained for more than six months, especially for MB patients. Vitamin D supplementation is recommended from the onset as a transcription factor to improve VDR and CAMP gene expression in leprosy patients.


Subject(s)
Leprosy , Receptors, Calcitriol , Antimicrobial Cationic Peptides , Antimicrobial Peptides , Cytokines/genetics , Drug Therapy, Combination , Gene Expression , Humans , Immunity , Interleukin-17/genetics , Interleukin-2/therapeutic use , Leprostatic Agents/therapeutic use , Leprosy/drug therapy , Mycobacterium leprae , Receptors, Calcitriol/genetics , Transcription Factors/genetics , Vitamin D , Cathelicidins
9.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Article in English | MEDLINE | ID: mdl-34784389

ABSTRACT

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Subject(s)
Ascariasis/immunology , Ascaris suum/immunology , Eosinophils/physiology , Immunoglobulin A, Secretory/metabolism , Pneumonia/prevention & control , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Ascariasis/metabolism , Ascariasis/parasitology , Female , Immunoglobulin A, Secretory/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/parasitology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
10.
Parasite Immunol ; 43(12): e12880, 2021 12.
Article in English | MEDLINE | ID: mdl-34558674

ABSTRACT

BACKGROUND: Visceral leishmaniasis (VL) is a serious public health problem. The factors that can determine whether VL develops and progresses to severe form have not been fully identified, but a specific cellular immune response appears to play a key role. Therefore, understanding immunopathogenesis can be useful in preventing a serious clinical outcome. MATERIALS AND METHODS: Bone marrow samples were collected from patients with severe VL (SVL) or non-severe VL (NSVL). Cytokine levels and parasitic load were analysed by RT-qPCR. There is a statistically significant difference in the leukocyte parameter in patients with SVL and NSVL compared with the control patients (p = .006 and p = .014, respectively). RESULTS: Urea, alanine transaminase and albumin parameters had a significant difference p = .036, p = .039 and p = .017, respectively, between SVL and NSVL. Although high levels of IFN-γ, IL-10, IL-6 and TNF-α were present in all groups of individuals with VL, they were not statistically associated with severity. In patients with active VL, IFN-γ and IL-10 were associated, respectively, with a reduction and increase in the parasite load, strong and significant positive association between IFN-γ and IL-10 (rho = .627 and p = .003). CONCLUSION: This study demonstrates that VL stimulates an non-dichotomized inflammatory response between Th1/Th2 and that bone marrow is an important tissue for immune regulation.


Subject(s)
Leishmaniasis, Visceral , Cytokines/metabolism , Humans , Interferon-gamma , Parasite Load , Tumor Necrosis Factor-alpha/metabolism
11.
PLoS Negl Trop Dis ; 15(9): e0009759, 2021 09.
Article in English | MEDLINE | ID: mdl-34534217

ABSTRACT

Visceral leishmaniasis (VL) is caused by protozoa belonging to the Leishmania donovani complex and is considered the most serious and fatal form among the different types of leishmaniasis, if not early diagnosed and treated. Among the measures of disease control stand out the management of infected dogs and the early diagnosis and appropriate treatment of human cases. Several antigens have been characterized for use in the VL diagnosis, among them are the recombinant kinesin-derived antigens from L. infantum, as rK39 and rKDDR. The main difference between these antigens is the size of the non-repetitive kinesin region and the number of repetitions of the 39 amino acid degenerate motif (6.5 and 8.5 repeats in rK39 and rKDDR, respectively). This repetitive region has a high antigenicity score. To evaluate the effect of increasing the number of repeats on diagnostic performance, we designed the rKDDR-plus antigen, containing 15.3 repeats of the 39 amino acid degenerate motif, besides the absence of the non-repetitive portion from L. infantum kinesin. Its performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and rapid immunochromatographic test (ICT), and compared with the kinesin-derived antigens (rKDDR and rK39). In ELISA with human sera, all recombinant antigens had a sensitivity of 98%, whereas the specificity for rKDDR-plus, rKDDR and rK39 was 100%, 96% and 71%, respectively. When evaluated canine sera, the ELISA sensitivity was 97% for all antigens, and the specificity for rKDDR-plus, rKDDR and rK39 was 98%, 91% and 83%, respectively. Evaluation of the ICT/rKDDR-plus, using human sera, showed greater diagnostic sensitivity (90%) and specificity (100%), when compared to the IT LEISH (79% and 98%, respectively), which is based on the rK39 antigen. These results suggest that the increased presence of repetitive motifs in the rKDDR-plus protein improves the diagnostic performance of serological tests by increasing the specificity and accuracy of the diagnosis.


Subject(s)
Antigens, Protozoan/blood , Leishmania infantum , Leishmaniasis, Visceral/veterinary , Protozoan Proteins/genetics , Serologic Tests/veterinary , Animals , Dog Diseases , Dogs , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Protein Modification, Translational , Protozoan Proteins/chemistry , Recombinant Proteins , Sensitivity and Specificity , Serologic Tests/methods , Zoonoses
12.
Vet Parasitol ; 296: 109495, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34147019

ABSTRACT

Human trypanosomiases and animal trypanosomoses are caused by distinct protozoan parasites of the genus Trypanosoma. The etiological agents of bovine trypanosomosis (BT) are T. vivax, T. congolense, or T. brucei, whose acute infections are initially characterized by hyperthermia, following moderate to severe anemia, subcutaneous edema, lethargy, reduced milk production, progressive weight loss, enlarged lymph nodes, reproductive disorders and death. Animals that survive the acute phase might recover and progress to the chronic, often asymptomatic, phase of infection. Despite their low sensitivity due to the characteristic low parasitemia, simple and costless direct parasitological examinations are the preferred diagnostic methods for animals. Thus, most of the epidemiological studies of BT are based on serological techniques using crude antigen. In this study, we describe the use of the MyxoTLm recombinant protein as an antigen on serological assays. Anti-T. vivax IgM and anti-T. vivax IgG ELISA assays using purified MyxoTLm revealed specificity rates of 91.30 % and 95.65 % and sensitivity rates of 82.35 % and 88.23 %, respectively, being higher than reported for crude antigens. Also, MyxoTLm demonstrated a good performance to detect IgM (ROC curve area = 0.8568) and excellent performance to detect IgG (ROC curve area = 0.9565) when compared to a crude antigen. T. evansi crude antigen used in the indirect anti-T. vivax IgM ELISA reached 70.58 % sensitivity and 78.26 % specificity, and had a lower test performance (ROC curve area = 0.7363). When applied to the anti-T. vivax IgG ELISA, the crude antigen reached 82.35 % sensitivity and 69.56 % specificity, also presenting a low performance with area under the ROC curve of 0.7570. Therefore, the use of MyxoTLm as an antigen on serological diagnosis of BT revealed to increase the sensitivity and the specificity if compared to crude antigens.


Subject(s)
Antigens, Protozoan , Cattle Diseases , Recombinant Proteins , Trypanosomiasis, Bovine , Animals , Antigens, Protozoan/metabolism , Cattle , Cattle Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Recombinant Proteins/metabolism , Trypanosoma vivax/immunology , Trypanosomiasis, Bovine/diagnosis
13.
Vaccine ; 39(2): 394-401, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33248854

ABSTRACT

An estimated 400 million people are infected by parasites of the genus Ascaris and the existing control measures are inefficient. Vaccine development using B cell antigens is a promising strategy for increased protection against this parasite. The present study aimed at developing a chimeric protein capable of conferring protection against infection by Ascaris sp. For this purpose, we performed B-cell epitope predictions on previously described vaccine candidate proteins from Ascaris suum and the corresponding peptides were used to construct a chimeric protein. Female BALB / c mice were immunized subcutaneously in three doses at 10 day intervals with a vaccine formulation comprised of the chimeric protein together with monophosphoryl lipid A (MPLA). Control groups included protein alone, MPLA, or PBS. After challenge infection, animals vaccinated with chimeric protein plus MPLA showed a reduction of 73.54% of larval load in the lung compared to control group animals. Animals immunized with chimeric protein plus MPLA also display higher IgG response and a reduction in lung inflammation. Our study highlights how chimeric proteins containing more than one B cell epitope can enhance immune protection against helminthic infection and offer new approaches to the development of Ascaris vaccines.


Subject(s)
Ascariasis , Animals , Antigens, Helminth , Ascariasis/prevention & control , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/genetics , Vaccination
14.
Acta Trop ; 211: 105655, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32783955

ABSTRACT

Trematodes have complex life cycles with multiple hosts. Biomphalaria snails commonly act as the first intermediate hosts of several species that can affect human and animal health. The specific identification of larval trematodes found in snails is difficult and limited, since the taxonomy of these flukes is based on morphological traits of the adults found in vertebrates. Despite recent advances worldwide, studies aiming at the use of molecular tools for the identification of cercariae found in snails are scarce in the South America. In fact, most studies are focused on Schistosoma mansoni, with few efforts directed towards the identification of larvae of other parasites found in planorbids. When reported, these other parasites are identified as cercarial types, an artificial morphological system of classification. Therefore, alternative strategies for a correct, rapid and inexpensive identification of larval trematodes found in Biomphalaria are needed. This work aimed at developing a methodology capable of distinguishing four important families of trematodes (Clinostomidae, Echinostomatidae, Schistosomatidae and Strigeidae) commonly found infecting species of Biomphalaria. Using the rDNA sequences of 34 species as input for the online tool TipMT, we designed trematode family-specific primers targeting the ITS region optimized to be used in multiplex PCR. The panel of primers identified in this study was effective at the same PCR condition. The specificity of the primers was confirmed, and the PCR sensitivity ranged from 0.1 ng to 1 ag of the DNA of the parasite. This methodology was also effective for the detection of coinfection. Through a simple, fast, accurate, and inexpensive methodology, it is possible to properly identify the trematode families included in this study in a single PCR reaction. A family level identification provides important information about probable hosts, pattern of life cycle and possible impacts that the infection generates in a specific region, thus allowing the design of better control strategies, especially for those infections that have medical and veterinary importance.


Subject(s)
Biomphalaria/parasitology , Multiplex Polymerase Chain Reaction/methods , Trematoda/genetics , Trematoda/isolation & purification , Trematode Infections/parasitology , Animals , Cercaria , Disease Reservoirs , Host-Parasite Interactions , Humans , Larva , South America , Trematoda/classification , Trematode Infections/epidemiology
15.
J Infect Public Health ; 13(8): 1078-1088, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32299687

ABSTRACT

The aim of this systematic review was to investigate the studies that evaluated the sensitivity and specificity of serologic tests using recombinant protein antigens from Mycobacterium leprae for leprosy diagnosis. We included 13 studies that were available in PubMed, Brazilian Virtual Library of Health, Web of Science, ScienceDirect and Scopus. From these studies, we found that the recombinant serine-rich 45-kDa protein of M. leprae (ML0411) demonstrated high performance for multibacillary (MB) also to paucibacillary (PB) patients, although this study was tested only for Indian population. Despite that, studies using the ND-O-LID antigen have been able to more accurately identify new cases of leprosy among people living in endemic or non-endemic areas and household contacts in Brazil, Colombia, and the Philippines, especially when combined with other biomarkers. Finally, low sensitivity values for PB patients' antibodies response remain challenging for tests intended to diagnose clinical forms that comprise this classification in leprosy.


Subject(s)
Leprosy , Mycobacterium leprae , Recombinant Proteins , Serologic Tests , Antibodies, Bacterial/blood , Antigens, Bacterial/metabolism , Brazil , Colombia , Humans , Leprosy/diagnosis , Mycobacterium leprae/immunology , Philippines , Recombinant Proteins/metabolism , Reproducibility of Results , Serologic Tests/standards
16.
Vet Parasitol ; 274: 108920, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31493694

ABSTRACT

Visceral leishmaniasis (VL) is a zoonosis caused by the parasite Leishmania infantum and the dog is its main reservoir in rural and urban areas. The diagnosis of infection is mainly based on the presence of anti-Leishmania IgG antibodies in the serum of infected dogs. In this study, the sensitivity and specificity of qualitative rapid tests (RTs) dual path platform (DPP) Bio-Manguinhos, rapid enzyme-linked immunosorbent assay (ELISA) IDEXX, Kalazar Detect and ALERE, as well as quantitative ELISA Bio-Manguinhos and in-house indirect immunofluorescence assay (IFA) tests were analyzed in sera from infected and uninfected dogs. Serial dilutions of the in-house IFA were compared with RTs and ELISA Bio-Manguinhos. The results showed that none of the tests reached 100% sensitivity and specificity. There was no statistical difference between the analyzed RTs. The most sensitive test was the DPP Bio-Manguinhos (97.9%), while the rapid ELISA IDEXX showed higher specificity (100%). In the treatment setting of infected and/or diseased animals, quantitative tests for monitoring the evolution of antibody titers are required, which indicates the maintenance of in-house IFA in animal handling. Furthermore, we demonstrate that the RTs present higher sensitivity in serum samples with superior antibody titers obtained in the in-house IFA. However, the RTs exhibited false negatives in samples with low titers of antibodies. Among the RTs, only the DPP Bio-Manguinhos presented better performance in this situation. Therefore, the use of RTs for the diagnosis of VL in dogs with low titers of antibodies, such as asymptomatic, should be carefully evaluated.


Subject(s)
Dog Diseases/blood , Leishmania infantum , Leishmaniasis, Visceral/veterinary , Serologic Tests/veterinary , Animals , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dogs , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/diagnosis , Sensitivity and Specificity
17.
PLoS One ; 14(1): e0211719, 2019.
Article in English | MEDLINE | ID: mdl-30703138

ABSTRACT

Visceral leishmaniasis (VL) or kala-azar, the most severe form of leishmaniasis, can lead to death if not properly diagnosed and treated. Correct identification of infected patients and reservoirs is vital for controlling the spread of leishmaniasis. Current diagnostic kits for leishmaniasis show high sensitivity and specificity, but can also result in false negatives and cross reactions with related parasitic infections. New diagnostic methods with greater accuracy are urgently needed for diagnosis of leishmaniasis. In this study, we aimed to uncover a new highly effective antigen for the diagnosis of visceral leishmaniasis in dogs and humans, aiming to improve the accuracy compared with those of current methods of diagnosis. Initially, in-silico epitope prediction analyses identified several potential B-cell epitopes in the repetitive region of Leishmania infantum kinesin, which co-localized with predicted structural disordered regions, suggesting high potential for antigenicity. Based on this analysis, 8.5 genomic motifs, which encode the repetitive sequence of 39 degenerate amino acids, were selected for recombinant expression. BLASTn analysis of this repetitive region indicated that it is absent in the T. cruzi parasite, which is closely related to Leishmania, indicating the specificity of this region. This potentially antigenic protein, named recombinant kinesin degenerated derived repeat (rKDDR), was recombinantly expressed in Escherichia coli BL21-Star using the pET28a-TEV expression vector. We then evaluated the performance of rKDDR in correctly diagnosing Leishmania infection and compared this new assay with currently used diagnostic tests for leishmaniasis. rKDDR showed greater sensitivity and specificity in correctly diagnosing leishmaniasis both in human (sensitivity 92.86% and specificity 100%) and canine (sensitivity 88.54% and specificity 97.30%) sera compared with those of rK39 (human: sensitivity 90.48% and specificity 97.92%; canine: sensitivity 78.13% and specificity 90.09%). In addition, the rKDDR-ELISA outperformed the EIE-LVC kit, which is the serologic kit recommended by the Brazilian Ministry of Health for the diagnosis of canine visceral leishmaniasis. These results indicate that rKDDR is a highly promising candidate for diagnosis of visceral leishmaniasis, and is more accurate than the currently used gold-standard antigens.


Subject(s)
Antigens, Protozoan/blood , Dog Diseases/diagnosis , Kinesins/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/diagnosis , Recombinant Proteins/immunology , Serologic Tests/methods , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Area Under Curve , Base Sequence , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dogs , Humans , Leishmania donovani/isolation & purification , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Retrospective Studies
18.
PLoS One ; 14(2): e0211831, 2019.
Article in English | MEDLINE | ID: mdl-30721272

ABSTRACT

Leishmaniasis encompasses a group of diverse clinical diseases caused by protozoan parasites of the Leishmania genus. This disease is a major public health problem in the New World affecting people exposed in endemic regions. The city of Governador Valadares (Minas Gerais/Brazil) is a re-emerging area for visceral leishmaniasis, with 191 human cases reported from 2008 to 2017 and a lethality rate of 14.7%. The transmission of the parasite occurs intensely in this region with up to 22% of domestic dogs with positive serology for the visceral form. Lu. longipalpis is one of the most abundant sand fly species in this area. Despite this scenario, so far there is no information regarding the circulating Leishmania species in the insect vector Lutzomyia longipalpis in this focus. We collected 616 female Lutzomyia longipalpis sand flies between January and September 2015 in the Vila Parque Ibituruna neighborhood (Governador Valadares/MG), which is located on a transitional area between the sylvatic and urban environments with residences built near a preserved area. After DNA extraction of individual sand flies, the natural Leishmania infections in Lu. longipalpis were detected by conventional PCR, using primers derived from kDNA sequences, specific for L. (Leishmania) or L. (Viannia) subgenus. The sensitivity of these PCR reactions was 0.1 pg of DNA for each Leishmania subgenus and the total infection rate of 16.2% (100 positive specimens). Species-specific PCR detected the presence of multiple Leishmania species in infected Lu. longipalpis specimens in Governador Valadares, including L. amazonensis (n = 3), L. infantum (n = 28), L. (Viannia) spp. (n = 20), coinfections with L. infantum and L. (Viannia) spp. (n = 5), and L. (Leishmania) spp (n = 44). Our results demonstrate that multiple Leishmania species circulate in Lu. longipalpis in Governador Valadares and reveal a potential increasing risk of transmission of the different circulating parasite species. This information reinforces the need for epidemiological and entomological surveillance in this endemic focus, and the development of effective control strategies against leishmaniasis.


Subject(s)
Insect Vectors/parasitology , Leishmania/classification , Leishmania/growth & development , Psychodidae/parasitology , Animals , Brazil/epidemiology , Humans , Leishmaniasis/epidemiology , Leishmaniasis/genetics , Leishmaniasis/transmission , Polymerase Chain Reaction , Urban Renewal
19.
BMC Genomics ; 19(1): 816, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30424726

ABSTRACT

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS: In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS: Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.


Subject(s)
Aneuploidy , Chagas Disease/parasitology , Genetic Variation , Genome, Protozoan , Protozoan Proteins/genetics , Trypanosoma cruzi/genetics , Whole Genome Sequencing/methods , Animals , Chagas Disease/transmission , DNA, Protozoan/genetics , Genotype , Humans , Insect Vectors/parasitology , Molecular Typing , Phylogeny , Trypanosoma cruzi/classification , Trypanosoma cruzi/isolation & purification
20.
Front Immunol ; 9: 2535, 2018.
Article in English | MEDLINE | ID: mdl-30473693

ABSTRACT

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.


Subject(s)
Ascaris suum/immunology , Immunoglobulin G/immunology , Protective Agents/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Helminth/immunology , Antigens, Helminth/immunology , Ascariasis/immunology , Ascariasis/parasitology , Female , Immunity/drug effects , Immunity/immunology , Immunization/methods , Interleukin-10/immunology , Larva/immunology , Lung/immunology , Lung/parasitology , Male , Mice , Mice, Inbred BALB C , Swine/immunology , Swine/parasitology , Swine Diseases/immunology , Swine Diseases/parasitology , Vaccination/methods , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...