Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Geobiology ; 22(4): e12611, 2024.
Article in English | MEDLINE | ID: mdl-39020475

ABSTRACT

The osmotic rupture of a cell, its osmotic lysis or cytolysis, is a phenomenon that active biological cell volume regulation mechanisms have evolved in the cell membrane to avoid. How then, at the origin of life, did the first protocells survive prior to such active processes? The pores of alkaline hydrothermal vents in the oceans form natural nanoreactors in which osmosis across a mineral membrane plays a fundamental role. Here, we discuss the dynamics of lysis and its avoidance in an abiotic system without any active mechanisms, reliant upon self-organized behaviour, similar to the first self-organized mineral membranes within which complex chemistry may have begun to evolve into metabolism. We show that such mineral nanoreactors could function as protocells without exploding because their self-organized dynamics have a large regime in parameter space where osmotic lysis does not occur and homeostasis is possible. The beginnings of Darwinian evolution in proto-biochemistry must have involved the survival of protocells that remained within such a safe regime.


Subject(s)
Artificial Cells , Origin of Life , Osmosis , Artificial Cells/metabolism , Minerals/metabolism , Minerals/chemistry , Osmotic Pressure , Cell Membrane/metabolism
2.
Phys Chem Chem Phys ; 24(29): 17841-17851, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35851594

ABSTRACT

Chemical gardens are self-assembled structures of mineral precipitates enabled by semi-permeable membranes. To explore the effects of gravity on the formation of chemical gardens, we have studied chemical gardens grown from cobalt chloride pellets and aqueous sodium silicate solution in a vertical Hele-Shaw cell. Through photography, we have observed and quantitatively analysed upward growing tubes and downward growing fingers. The latter were not seen in previous experimental studies involving similar physicochemical systems in 3-dimensional or horizontal confined geometry. To better understand the results, further studies of flow patterns, buoyancy forces, and growth dynamics under schlieren optics have been carried out, together with characterisation of the precipitates with scanning electron microscopy and X-ray diffractometry. In addition to an ascending flow and the resulting precipitation of tubular filaments, a previously not reported descending flow has been observed which, under some conditions, is accompanied by precipitation of solid fingering structures. We conclude that the physics of both the ascending and descending flows are shaped by buoyancy, together with osmosis and chemical reaction. The existence of the descending flow might highlight a limitation in current experimental methods for growing chemical gardens under gravity, where seeds are typically not suspended in the middle of the solution and are confined by the bottom of the vessel.

3.
Chaos ; 32(5): 053107, 2022 May.
Article in English | MEDLINE | ID: mdl-35649986

ABSTRACT

When confined to a Hele-Shaw cell, chemical gardens can grow as filaments, narrow structures with an erratic and tortuous trajectory. In this work, the methodology applied to studies with horizontal Hele-Shaw cells is adapted to a vertical configuration, thus introducing the effect of buoyancy into the system. The motion of a single filament tip is modeled by taking into account its internal pressure and the variation of the concentration of precipitate that constitutes the chemical garden membrane. While the model shows good agreement with the results, it also suggests that the concentration of the host solution of sodium silicate also plays a role in the growth of the structures despite being in stoichiometric excess.

4.
Langmuir ; 38(21): 6700-6710, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35593590

ABSTRACT

We describe and study the formation of confined chemical garden patterns. At low flow rates of injection of cobalt chloride solution into a Hele-Shaw cell filled with sodium silicate, the precipitate forms with a thin filament wrapping around an expanding "candy floss" structure. The result is the formation of an Archimedean spiral structure. We model the growth of the structure mathematically. We estimate the effective density of the precipitate and calculate the membrane permeability. We set the results within the context of recent experimental and modeling work on confined chemical garden filaments.

5.
Phys Chem Chem Phys ; 23(9): 5222-5235, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33629080

ABSTRACT

Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10-5 m2 s-1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment.

6.
Philos Trans A Math Phys Eng Sci ; 378(2179): 20200160, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32762430

ABSTRACT

We present the second half of the papers from the Stokes200 symposium celebrating the bicentenary of George Gabriel Stokes. This article is part of the theme issue 'Stokes at 200 (part 2)'.

7.
Artif Life ; 26(3): 315-326, 2020.
Article in English | MEDLINE | ID: mdl-32697160

ABSTRACT

Self-organizing precipitation processes, such as chemical gardens forming biomimetic micro- and nanotubular forms, have the potential to show us new fundamental science to explore, quantify, and understand nonequilibrium physicochemical systems, and shed light on the conditions for life's emergence. The physics and chemistry of these phenomena, due to the assembly of material architectures under a flux of ions, and their exploitation in applications, have recently been termed chemobrionics. Advances in understanding in this area require a combination of expertise in physics, chemistry, mathematical modeling, biology, and nanoengineering, as well as in complex systems and nonlinear and materials sciences, giving rise to this new synergistic discipline of chemobrionics.


Subject(s)
Biology , Biomimetics , Chemistry , Engineering , Interdisciplinary Research , Origin of Life , Physics , Materials Science , Models, Theoretical , Nanostructures
8.
J R Soc Interface ; 17(168): 20200187, 2020 07.
Article in English | MEDLINE | ID: mdl-32693749

ABSTRACT

Stingless bees of the genus Tetragonula construct a brood comb with a spiral or a target pattern architecture in three dimensions. Crystals possess these same patterns on the molecular scale. Here, we show that the same excitable-medium dynamics governs both crystal nucleation and growth and comb construction in Tetragonula, so that a minimal coupled-map lattice model based on crystal growth explains how these bees produce the structures seen in their bee combs.


Subject(s)
Bees , Animals
9.
Philos Trans A Math Phys Eng Sci ; 378(2174): 20190505, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32507087

ABSTRACT

Sir George Gabriel Stokes PRS was for 30 years an inimitable Secretary of the Royal Society and its President from 1885 to 1890. Two hundred years after his birth, Stokes is a towering figure in physics and applied mathematics; fluids, asymptotics, optics, acoustics among many other fields. At the Stokes200 meeting, held at Pembroke College, Cambridge from 15-18th September 2019, an invited audience of about 100 discussed the state of the art in all the modern research fields that have sprung from his work in physics and mathematics, along with the history of how we have got from Stokes' contributions to where we are now. This theme issue is based on work presented at the Stokes200 meeting. In bringing together people whose work today is based upon Stokes' own, we aim to emphasize his influence and legacy at 200 to the community as a whole. This article is part of the theme issue 'Stokes at 200 (Part 1)'.

10.
Philos Trans A Math Phys Eng Sci ; 378(2174): 20200064, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32507093

ABSTRACT

Although we humans have known since the first smokey campfires of prehistory that our activities might alter our local surroundings, the nineteenth century saw the first indications that humankind might alter the global environment; what we currently know as anthropogenic climate change. We are now celebrating the bicentenaries of three figures with a hand in the birth of climate science. George Stokes, John Tyndall and John Ruskin were born in August 1819, August 1820 and February 1819, respectively. We look back from the perspective of two centuries following their births. We outline their contributions to climate science: understanding the equations of fluid motion and the recognition of the need to collect global weather data together with comprehending the role in regulating terrestrial temperature played by gases in the atmosphere. This knowledge was accompanied by fears of the Earth's regression to another ice age, together with others that industrialization was ruining humankind's health, morals and creativity. The former fears of global cooling were justified but seem strange now that the balance has tipped so far the other way towards global warming; the latter, on the other hand, today seem very prescient. This article is part of the theme issue 'Stokes at 200 (Part 1)'.


Subject(s)
Climate , Science/history , History, 19th Century , History, 20th Century
11.
Interface Focus ; 9(6): 20190064, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31641435

ABSTRACT

Concentration cycles are important for bonding of basic molecular building components at the emergence of life. We demonstrate that oscillations occur intrinsically in precipitation reactions when coupled with fluid mechanics in self-assembled precipitate membranes, such as at submarine hydrothermal vents. We show that, moreover, the flow of ions across one pore in such a prebiotic membrane is larger than that across one ion channel in a modern biological cell membrane, suggesting that proto-biological processes could be sustained by osmotic flow in a less efficient prebiotic environment. Oscillations in nanoreactors at hydrothermal vents may be just right for these warm little pores to be the cradle of life.

12.
Astrobiology ; 19(5): 685-695, 2019 05.
Article in English | MEDLINE | ID: mdl-30964322

ABSTRACT

Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.


Subject(s)
Extraterrestrial Environment/chemistry , Ice , Jupiter , Oceans and Seas , Origin of Life , Earth, Planet , Hydrothermal Vents/chemistry , Sulfates/chemistry , Thermodynamics
13.
Angew Chem Int Ed Engl ; 58(19): 6207-6213, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30889305

ABSTRACT

Chemical gardens and clock reactions are two of the best-known demonstration reactions in chemistry. Until now these have been separate categories. We have discovered that a chemical garden confined to two dimensions is a clock reaction involving a phase change, so that after a reproducible and controllable induction period it explodes.

14.
Soft Matter ; 15(4): 803-812, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30644940

ABSTRACT

Filiform corrosion produces long and narrow trails on various coated metals through the detachment of the coating layer from the substrate. In this work, we present a combined experimental and theoretical analysis of this process with the aim to describe quantitatively the shape of the cross-section, perpendicular to the direction of propagation, of the filaments produced. For this purpose, we introduce a delamination model of filiform corrosion dynamics and show its compatibility with experimental data where the coating thickness has been varied systematically.

15.
Phys Chem Chem Phys ; 20(33): 21617-21628, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30101260

ABSTRACT

We investigate the effects of a dissolution reaction, A(aq) + B(s) → C(aq), on the gravitational instability and nonlinear dynamic behaviour of a diffusive boundary layer in a porous medium. Our linear stability and numerical results reveal that, unexpectedly, even when the density contribution of the soluble product C is smaller than that of the dissolved solute A, the chemical reaction can destabilize the layer and accelerate the onset of convection. However, for a very light product, the reaction stabilizes the layer. We show that these widely disparate characteristics of the reactive-diffusive layer are outcomes of the nonlinear competition between two reaction effects, the destabilizing sharpening of the solute concentration gradient and associated increase in the solute diffusive flux, and the stabilizing replacement of the solute by a less dense product near the interface.

16.
Phys Chem Chem Phys ; 20(2): 784-793, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29188258

ABSTRACT

Two reaction systems that are at first sight very different produce similar macroscopic filamentary product trails. The systems are chemical gardens confined to a Hele-Shaw cell and corroding metal plates that undergo filiform corrosion. We show that the two systems are in fact very much alike. Our experiments and analysis show that filament dynamics obey similar scaling laws in both instances: filament motion is nearly ballistic and fully self-avoiding, which creates self-trapping events.

17.
Proc Math Phys Eng Sci ; 473(2205): 20170387, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28989315

ABSTRACT

Black smokers and Lost City-type springs are varieties of hydrothermal vents on the ocean floors that emit hot, acidic water and cool, alkaline water, respectively. While both produce precipitation structures as the issuing fluid encounters oceanic water, Lost City-type hydrothermal vents in particular have been implicated in the origin of life on the Earth. We present a parallel-velocity flow model for the radius and flow rate of a cylindrical jet of fluid that forms the template for the growth of a tube precipitated about itself and we compare the solution with previous laboratory experimental results from growth of silicate chemical gardens. We show that when the growth of the solid structure is determined by thermal diffusion, fluid flow is slow at the solid-liquid contact. However, in the case of chemical diffusive transport, the fluid jet effectively drags the liquid in the pores of the solid precipitate. These findings suggest a continuum in the diffusive growth rate of hydrothermal vent structures, where Lost City-type hydrothermal vents favour contact between the vent fluid and the external seawater. We explore the implications for the road to life.

18.
Proc Math Phys Eng Sci ; 472(2195): 20160466, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27956875

ABSTRACT

Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.

19.
Phys Chem Chem Phys ; 19(1): 644-655, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27918023

ABSTRACT

We quantify the destabilising effect of a first-order chemical reaction on the fingering instability of a diffusive boundary layer in a porous medium. Using scaling, we show that the dynamics of such a reactive boundary layer is fully determined by two dimensionless groups: Da/Ra2, which measures the timescale for convection compared to those for reaction and diffusion; and ßC/ßA, which reflects the density change induced by the product relative to that of the diffusing solute. Linear stability and numerical results for ßC/ßA in the range 0-10 and Da/Ra2 in the range 0-0.01 are presented. It is shown that the chemical reaction increases the growth rate of a transverse perturbation and favours large wavenumbers compared to the inert system. Higher ßC/ßA and Da/Ra2 not only accelerate the onset of convection, but crucially also double the transport of the solute compared to the inert system. Application of our findings to the storage of carbon dioxide in carbonate saline aquifers reveals that chemical equilibrium curtails this increase of CO2 flux to 50%.

20.
Nat Commun ; 7: 13266, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27807343

ABSTRACT

High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...