Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Anim Reprod ; 21(1): e20230155, 2024.
Article in English | MEDLINE | ID: mdl-38628495

ABSTRACT

The adnexa fetal tissues are sources of mesenchymal stromal cells (MSCs) due to their noninvasive harvest, with all biological material discarded most of the time. MSCs are a promise regarding to their plasticity, self-renewal, differentiation potentials, immunomodulatory and anti-inflammatory properties, which have made clinical stem cell therapy a reality. The present study aimed to characterize and evaluate the immunomodulation ability of bovine mesenchymal cells collected from bovine amniotic fluid (bAFMSCs) isolated and subjected to sixth consecutive culture passages in vitro. The multilineage properties of the bAFMSCs collections confirmed the ability to undergo adipogenic, chondrogenic and osteogenic differentiation. The mesenchymal gene transcription CD106, CD73, CD29, CD90 and CD166 were detected in bAFMSCs, whereas CD34 and CD45 were not detected. Regarding cytokine mRNA expression, IL2, IL6, INFα, INFß, INFγ, TNFα and TNFß were downregulated, while IL10 was highly regulated in all studied passages. The present study demonstrated the immunological properties and multipotency of in vitro bAFMSCs collections, and thus, they can be tested in cattle pathological treatments or multiplication by nuclear transfer cloning.

3.
Arch Virol ; 166(8): 2285-2289, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34057608

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered multipotent progenitors with the capacity to differentiate into mesoderm-like cells in many species. The immunosuppressive properties of MSCs are important for downregulating inflammatory responses. Turkey coronavirus (TCoV) is the etiological agent of a poult mortality syndrome that affects intestinal epithelial cells. In this study, poult MSCs were isolated, characterized, and infected with TCoV after in vitro culture. The poult-derived MSCs showed fibroblast-like morphology and the ability to undergo differentiation into mesodermal-derived cells and to support virus replication. Infection with TCoV resulted in cytopathic effects and the loss of cell viability. TCoV antigens and new viral progeny were detected at high levels, as were transcripts of the pro-inflammatory factors INFγ, IL-6, and IL-8. These findings suggest that the cytokine storm phenomenon is not restricted to one genus of the family Coronaviridae and that MSCs cannot always balance the process.


Subject(s)
Coronavirus, Turkey/physiology , Cytokines/metabolism , Virus Replication , Animals , Cell Differentiation , Cell Survival , Cytopathogenic Effect, Viral , Interferon-gamma/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Turkeys , Up-Regulation
4.
Parasitol Int ; 80: 102216, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33137502

ABSTRACT

This research had as objective to evaluate the occurrence and to characterize genetically the infections by Cryptosporidium in Mazama gouazoubira. By a non-invasive harvest methodology using trained sniffer dogs to locate fecal samples of cervids, 642 fecal samples were obtained from six Brazilian localities. The cervids species responsible for the excretion of each fecal sample were identified by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), using the mitochondrial cytochrome b target gene (cyst b) and the restriction enzymes Sspl, AflIII and BstN. From this identification, 437 fecal samples of M. gouazoubira were selected for research of Cryptosporidium spp. performed through negative staining with malachite green and polymerase chain reaction (nPCR), with the subunit of 18S rRNA gene, followed by sequencing the amplified products. In the samples that were diagnosed the presence of parasite species with zoonotic potential, genotyping was also performed using nPCR with the subunit of GP60 gene. Statistical analysis consisted of the Fisher exact test to verify the association of the presence of the enteroparasite in relation to the presence of cattle in each locality, and the McNemar tests and Kappa correlation coefficient used to compare the results obtained between the two diagnostic techniques. In the fecal samples of M. gouazoubira the occurrences of Cryptosporidium were diagnosed in 1.6% (7/437) and 1.1% (5/437), respectively, through nPCR and microscopy. Cryptosporidium. parvum was diagnosed in 100% (7/7) of the samples submitted to sequencing (18S gene). The IIaA16G3R1 subtype was diagnosed in five of the C. parvum samples submitted to genotyping (GP60 gene). This is the first world report of C. parvum in M. gouazoubira and subtype IIaA16G3R1 in cervids.


Subject(s)
Cryptosporidiosis/diagnosis , Cryptosporidium parvum/isolation & purification , Deer , Feces/parasitology , Animals , Brazil , Cattle , Cryptosporidiosis/parasitology , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , RNA, Helminth/analysis , RNA, Ribosomal, 18S/analysis
5.
Rev Soc Bras Med Trop ; 53: e20190525, 2020.
Article in English | MEDLINE | ID: mdl-32428174

ABSTRACT

INTRODUCTION: Canine visceral leishmaniasis (CVL) is a public health problem, and its prevalence is associated with the coexistence of vectors and reservoirs. CVL is a protozoonosis caused by Leishmania infantum that is endemic in the southeast region of Brazil. Thus, vector and canine reservoir control strategies are needed to reduce its burden. This study aimed to verify the CVL seroprevalence and epidemiology in a municipality in Southeast Brazil to initiate disease control strategies. METHODS: A total of 833 dogs were subjected to Dual Path Platform (DPP) testing and enzyme-linked immunosorbent assays. For seropositive dogs, epidemiological aspects were investigated using a questionnaire and a global position system. The data were submitted to simple logistic regression, kernel estimation, and Bernoulli spatial scan statistical analysis. RESULTS: The overall CVL-confirmed seroprevalence was 16.08%. The 28.93% in the DPP screening test was associated with dogs maintained in backyards with trees, shade, animal and/or bird feces, and contact with other dogs and cats, with sick dogs showing the highest chances of infection (odds ratio, 2.6; 95% confidence interval, 2.38-1.98), especially in residences with elderly people. A spatial analysis identified two hotspot regions and detected two clusters in the study area. CONCLUSIONS: Our results demonstrated that residences with elderly people and the presence of trees, shade, feces, and pet dogs and cats increased an individual's risk of developing CVL. The major regions where preventive strategies for leishmaniasis were to be initiated in the endemic area were identified in two clusters.


Subject(s)
Dog Diseases/epidemiology , Leishmaniasis, Visceral/veterinary , Animals , Antibodies, Protozoan/blood , Brazil/epidemiology , Cats , Dog Diseases/diagnosis , Dogs , Endemic Diseases , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Male , Prevalence , Seroepidemiologic Studies , Spatial Analysis
7.
Arch Virol ; 165(1): 261, 2020 01.
Article in English | MEDLINE | ID: mdl-31784908

ABSTRACT

The Editor-in-Chief has retracted this article [1]. Figures 1A, 1D and 2B (bottom right) are identical with Figures 1A, 1H and 1B respectively in another article [2] which reports a study in a different species. In addition, Table 1 contains data presented in a third article [3], which also reports a study in a different species. The Editor-in-Chief therefore no longer has confidence in the validity of the data and the conclusions drawn. Tereza C. Cardoso disagrees with this retraction. Helena L. Ferreira agrees with this retraction. Sergio E. L. da Silva, Andrea F. Garcia, Felipe E. S. Silva, Roberto Gameiro, Carolina U. F. Fabri and Dielson S. Vieira have not responded to any correspondence about this retraction.

8.
Rev. Soc. Bras. Med. Trop ; 53: e20190525, 2020. tab, graf
Article in English | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1136829

ABSTRACT

Abstract INTRODUCTION: Canine visceral leishmaniasis (CVL) is a public health problem, and its prevalence is associated with the coexistence of vectors and reservoirs. CVL is a protozoonosis caused by Leishmania infantum that is endemic in the southeast region of Brazil. Thus, vector and canine reservoir control strategies are needed to reduce its burden. This study aimed to verify the CVL seroprevalence and epidemiology in a municipality in Southeast Brazil to initiate disease control strategies. METHODS: A total of 833 dogs were subjected to Dual Path Platform (DPP) testing and enzyme-linked immunosorbent assays. For seropositive dogs, epidemiological aspects were investigated using a questionnaire and a global position system. The data were submitted to simple logistic regression, kernel estimation, and Bernoulli spatial scan statistical analysis. RESULTS: The overall CVL-confirmed seroprevalence was 16.08%. The 28.93% in the DPP screening test was associated with dogs maintained in backyards with trees, shade, animal and/or bird feces, and contact with other dogs and cats, with sick dogs showing the highest chances of infection (odds ratio, 2.6; 95% confidence interval, 2.38-1.98), especially in residences with elderly people. A spatial analysis identified two hotspot regions and detected two clusters in the study area. CONCLUSIONS: Our results demonstrated that residences with elderly people and the presence of trees, shade, feces, and pet dogs and cats increased an individual's risk of developing CVL. The major regions where preventive strategies for leishmaniasis were to be initiated in the endemic area were identified in two clusters.


Subject(s)
Animals , Male , Female , Cats , Dogs , Dog Diseases/epidemiology , Leishmaniasis, Visceral/veterinary , Brazil/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Protozoan/blood , Seroepidemiologic Studies , Prevalence , Leishmania infantum/immunology , Endemic Diseases , Dog Diseases/diagnosis , Spatial Analysis , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology
10.
Vet Microbiol ; 229: 153-158, 2019 02.
Article in English | MEDLINE | ID: mdl-30642592

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors-in-Chief and Authors. Fig 1A is a duplicate of a figure that has already been published in da Silva SEL et al. Archives of Virology 2018;163:1043-1049; 10.1007/s00705-018-3704-2. These two papers report studies performed with cells from two different animal species (bovine cells for the Veterinary Microbiology paper and chicken cells for the Archives of Virology paper). The reuse of the same figure in the Veterinary Microbiology paper to describe cells that were supposed to be from a different species is thus inappropriate and also puts into question the reliability of the other results presented in this paper. In addition, the Editors-in-Chief have remaining concerns about the strong similarities of other data presented in the two papers. Even if these concerns were addressed, the re-use of any data has to be clearly indicated and appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.


Subject(s)
Herpesvirus 5, Bovine , Macrophages/virology , Mitochondria/pathology , Virus Replication/physiology , Animals , Cattle , Cell Proliferation , Cell Survival , Cells, Cultured , Macrophages/metabolism , Membrane Potential, Mitochondrial , Nitric Oxide
11.
Reprod Domest Anim ; 54(2): 289-299, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30317681

ABSTRACT

The aim of this work was to investigate the methylation and hydroxymethylation status of mesenchymal stem cells (MSC) from amniotic fluid (MSC-AF), adipose tissue (MSC-AT) and fibroblasts (FIB-control) and to verify the effect of trichostatin A (TSA) on gene expression and development of cloned bovine embryos produced using these cells. Characterization of MSC from two animals (BOV1 and BOV2) was performed by flow cytometry, immunophenotyping and analysis of cellular differentiation genes expression. The cells were used in the nuclear transfer in the absence or presence of 50 nM TSA for 20 hr in embryo culture. Expression of HDAC1, HDAC3 and KAT2A genes was measured in embryos by qRT-PCR. Methylation results showed difference between animals, with MSC from BOV2 demonstrating lower methylation rate than BOV1. Meanwhile, MSC-AF were less hydroxymethylated for both animals. MSC-AF from BOV2 produced 44.92 ± 8.88% of blastocysts when embryos were exposed to TSA and similar to embryo rate of MSC-AT also treated with TSA (37.96 ± 15.80%). However, when methylation was lower in FIB compared to MSC, as found in BOV1, the use of TSA was not sufficient to increase embryo production. MSC-AF embryos expressed less HDAC3 when treated with TSA, and expression of KAT2A was higher in embryos produced with all MSC and treated with TSA than embryos produced with FIB. The use of MSC less methylated and more hydroxymethylated in combination with embryo incubation with TSA can induce lower expression of HDAC3 and higher expression of KAT2A in the embryos and consequently improve bovine embryo production.


Subject(s)
Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Mesenchymal Stem Cells/cytology , Acetylation , Animals , Cattle , Cloning, Organism/methods , Cloning, Organism/veterinary , DNA Methylation , Embryo, Mammalian/embryology , Embryonic Development , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nuclear Transfer Techniques/veterinary
12.
Avian Pathol ; 47(3): 286-293, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29517348

ABSTRACT

The detection of avian coronaviruses (AvCoV) in wild birds and the emergence of new AvCoV have increased in the past few years. In the present study, the pathogenicity of three AvCoV isolates was investigated in day-old chicks. One AvCoV isolated from a pigeon, which clustered with the Massachusetts vaccine serotype, and two AvCoV isolated from chickens, which grouped with a Brazilian genotype lineage, were used. Clinical signs, gross lesions, histopathological changes, ciliary activity, viral RNA detection, and serology were evaluated during 42 days post infection. All AvCoV isolates induced clinical signs, gross lesions in the trachea, moderate histopathological changes in the respiratory tract, and mild changes in other tissues. AvCoV isolated from the pigeon sample caused complete tracheal ciliostasis over a longer time span. Specific viral RNA was detected in all tissues, but the highest RNA loads were detected in the digestive tract (cloacal swabs and ileum). The highest antibody levels were also detected in the group infected with an isolate from the pigeon. These results confirm the pathogenicity of Brazilian variants, which can cause disease and induce gross lesions and histopathological changes in chickens. Our results suggest that non-Galliformes birds can also play a role in the ecology of AvCoV.


Subject(s)
Antibodies, Viral/blood , Chickens/virology , Columbidae/virology , Coronavirus Infections/veterinary , Gammacoronavirus/pathogenicity , Poultry Diseases/virology , Tracheal Diseases/veterinary , Animals , Coronavirus Infections/virology , Gammacoronavirus/genetics , Gammacoronavirus/immunology , Gammacoronavirus/isolation & purification , Genotype , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Infectious bronchitis virus/isolation & purification , Infectious bronchitis virus/pathogenicity , Trachea/virology , Tracheal Diseases/virology
13.
Arch Virol ; 163(4): 1043-1049, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29302792

ABSTRACT

To establish an association between mitochondrial dysfunction and apoptosis following infectious bronchitis virus (IBV) infection, HD11 avian macrophage cells were infected with the Massachusetts 41 (M41) strain. Our results show that the M41 strain of IBV induced cytopathic effects followed by the release of new viral particles. Elevated numbers of apoptotic cells were observed at 24, 48 and 72 h post-infection (p.i.). Viral infection was associated with mitochondrial membrane depolarization and reactive oxygen species (ROS) production at all of the examined timepoints p.i. In summary, IBV M41 replication in infected HD11 macrophages seems to induce mitochondrial bioenergy failure, acting as a respiratory chain uncoupler, without compromising viral replication.


Subject(s)
Host-Pathogen Interactions , Infectious bronchitis virus/pathogenicity , Macrophages/virology , Mitochondria/virology , Virion/pathogenicity , Animals , Apoptosis , Cell Line , Cell Proliferation , Chickens , Infectious bronchitis virus/growth & development , Macrophages/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Virion/growth & development , Virus Replication
14.
J Neurovirol ; 23(5): 772-778, 2017 10.
Article in English | MEDLINE | ID: mdl-28831740

ABSTRACT

Bovine herpesvirus 5 (BHV5) infection of young cattle is frequently associated with fatal neurological disease and, as such, represents an attractive model for studying the pathogenesis of viral-induced meningoencephalitis. Following replication in the nasal mucosa, BHV5 invades the central nervous system (CNS) mainly through the olfactory pathway. The innate immune response triggered by the host face to virus replication through the olfactory route is poorly understood. Recently, an upregulation of conserved pathogen-associated molecular pattern, as Toll-like receptors (TLRs), has been demonstrated in the CNS of BHV5 experimentally infected cows. A new perspective to understand host-pathogen interactions has emerged elucidating microRNAs (miRNAs) network that interact with innate immune response during neurotropic viral infections. In this study, we demonstrated a link between the expression of TLRs 3, 7, and 9 and miR-155 transcription in the olfactory bulbs (OB) of 16 cows suffering from acute BHV5-induced neurological disease. The OBs were analyzed for viral antigens and genome, miR-155 and TLR 3, 7, and 9 expression considering three major regions: olfactory receptor neurons (ORNs), glomerular layer (GL), and mitral cell layer (ML). BHV5 antigens and viral genomes, corresponding to glycol-C gene, were detected in all OBs regions by fluorescent antibody assay (FA) and PCR, respectively. TLR 3, 7, and 9 transcripts were upregulated in ORNs and ML, yet only ORN layers revealed a positive correlation between TLR3 and miR-155 transcription. In ML, miR-155 correlated positively with all TLRs studied. Herein, our results evidence miR-155 transcription in BHV5 infected OB tissue associated to TLRs expression specifically ORNs which may be a new window for further studies.


Subject(s)
Encephalitis, Viral/metabolism , Herpesviridae Infections/metabolism , Meningoencephalitis/metabolism , MicroRNAs/metabolism , Toll-Like Receptors/biosynthesis , Animals , Cattle , Female , Gene Expression Regulation , Herpesvirus 5, Bovine , Olfactory Bulb/metabolism , Olfactory Receptor Neurons/metabolism , Toll-Like Receptor 3/biosynthesis , Toll-Like Receptor 7/biosynthesis , Toll-Like Receptor 9/biosynthesis , Transcription, Genetic
15.
Genome Announc ; 5(29)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28729279

ABSTRACT

We report here the complete genome sequence of an avian metapneumovirus (aMPV) isolated from a tracheal tissue sample of a commercial layer flock. The complete genome sequence of aMPV-A/chicken/Brazil-SP/669/2003 was obtained using MiSeq (Illumina, Inc.) sequencing. Phylogenetic analysis of the complete genome classified the isolate as avian metapneumovirus subtype A.

16.
Heliyon ; 3(12): e00491, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29387822

ABSTRACT

Despite of the role of domestic dogs as reservoirs for threatening viral diseases for wild carnivores, few studies have focused to identify circulation of viruses among dogs living in human/wildlife interfaces. To identify canine parvovirus (CPV) types circulating in dogs living in an Atlantic forest biome, faecal samples (n = 100) were collected at the same period (one week) corresponding to each of four areas, during 2014 to 2016 and corresponded to 100 different individuals. CPV was isolated in cell culture from 67 out 100 (67%) samples from healthy dogs. Cytopathic effects were characterized by total or partial cell culture lysis. Genome sequences of CPV-2a (10%), CPV-2b (7%) and CPV-2c (50%) were concomitantly detected by PCR and nucleotide sequencing. The current study addresses the importance of monitoring CPV circulation among dogs presenting potential contact with wildlife species.

17.
Cell Tissue Res ; 367(2): 243-256, 2017 02.
Article in English | MEDLINE | ID: mdl-27677269

ABSTRACT

The possibility of isolating bovine mesenchymal multipotent stromal cells (MSCs) from fetal adnexa is an interesting prospect due to the potential use of these cells in biotechnological applications. However, little is known about the properties of these progenitor cells in bovine species. Wharton's jelly (WJ) MSC cells were obtained from the umbilical cord of bovine fetuses at three different stages of pregnancy and divided into groups 1, 2 and 3 according to gestational trimester. Cell morphology, from the three stages of pregnancy, typically appeared fibroblast-like spindle-shaped, presenting the same viability and number. Moreover, the proliferative ability of T-cells in response to a mitogenic stimulus was suppressed when WJMSC cells were added to the culture. Multilineage properties were confirmed by their ability to undergo adipogenic, osteogenic/chondrogenic and neurogenic differentiation. Mesenchymal phenotyping, CD105+, CD29+, CD73+ and CD90+ cell markers were detected in all three cell groups, yet these markers were considered more expressed in MSCs of group 2 (p < 0.005). Expression of cytokines IL2, IL6RR, INFAC, INFB1, IFNG, TNF and LTBR were downregulated, whereas IL1F10 expression was upregulated in all tested WJMSCs. The present study demonstrated that WJMSCs harvested from the bovine umbilical cord at different gestational stages showed proliferative capacity, immune privilege and stemness potential.


Subject(s)
Cell Separation/methods , Immunomodulation/genetics , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Pregnancy Trimesters/genetics , Transcription, Genetic , Wharton Jelly/cytology , Animals , Biomarkers/metabolism , Cattle , Cell Differentiation , Cell Lineage , Cell Proliferation , Cell Shape , Cell Survival , Female , Flow Cytometry , Gene Expression Profiling , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Phenotype , Pregnancy , Telomerase/metabolism , Umbilical Cord/cytology
18.
Ciênc. rural ; 46(10): 1830-1837, Oct. 2016. tab, graf
Article in English | LILACS | ID: lil-792538

ABSTRACT

ABSTRACT: Wharton's jelly is a source of mesenchymal stem cells (MSCs) that had not yet been tested for bovine embryo production by nuclear transfer (NT). Thus, the objective of this study was to isolate, characterize and test MSCs derived from Wharton's jelly for embryo and pregnancy production by NT in cattle. The umbilical cord was collected during calving and cells derived from Wharton's jelly (WJCs) were isolated by explant and cultured in Dulbecco's Modified Eagle Medium. Skin Fibroblasts (FB) were isolated after 6 months of life. Morphological analysis was performed by bright field and scanning electron microscopy (SEM) during cell culture. Phenotypic and genotypic characterization by flow cytometry, immunocytochemistry, RT-PCR and differentiation induction in cell lineages were performed for WJC. In the NT procedure, oocytes at the arrested metaphase II stage were enucleated using micromanipulators, fused with WJCs or FB and later activated artificially. SEM micrographs revealed that WJCs have variable shape under culture. Mesenchymal markers of MSCs (CD29+, CD73+, CD90+ and CD105+) were expressed in bovine-derived WJC cultures, as evidenced by flow cytometry, immunocytochemistry and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes and adipocytes. After classification, the WJCs were used in NT. Blastocyst formation rate by NT with WJCs at day 7 was 25.80±0.03%, similar to blatocyst rate with NT using skin fibroblasts (19.00±0.07%). Pregnancies were obtained and showed that WJCs constitute a new cell type for use in animal cloning.


RESUMO: A geleia de Wharton é uma fonte de células tronco mesenquimais (CTMs) que ainda não havia sido testada para a produção de embriões bovinos por transferência nuclear (TN). O objetivo deste estudo foi isolar, caracterizar e testar as CTMs derivadas da geleia de Wharton para produção de embriões e gestações por transferência nuclear em bovinos. O cordão umbilical foi coletado durante o nascimento e as células derivadas da geleia de Wharton (CGWs) foram isoladas por explante e cultivadas em Dulbecco's Modified Eagle Medium. Fibroblastos (FB) da pele foram isolados após 6 meses de vida. As análises morfológicas foram realizadas pelas microscopias de campo claro e eletrônica de varredura durante o cultivo celular. Caracterização fenotípica e genotípica por citometria de fluxo, imunocitoquímica, RT-PCR e indução da diferenciação em linhagens celulares foi realizada com as CGWs. No procedimento de TN, ovócitos no estágio de metáfase II foram enucleados usando micromanipuladores, fusionados com CGWs ou FB e então ativados artificialmente. Micrografias de microscopia de varredura revelaram que CGWs tiveram forma variada sob cultivo. Os marcadores mesenquimais de CTMs (CD29+, CD73+, CD90+ and CD105+) foram expressos em cultura de CGWs bovina, como evidenciado por citometria de fluxo, imunocitoquímica e RT-PCR. Quando induzidas, estas células diferenciaram-se em osteócitos, condrócitos e adipócitos. Após classificação, as CGWs foram utilizadas na TN. A taxa de formação de blastocistos por TN com CGWs no sétimo dia de cultivo foi de 25,80±0,03%, similar a produção de blastócitos por TN com fibroblastos de pele (19,00±0,07). Gestações foram obtidas e mostraram que CGWs constituem um novo tipo celular para ser usado na clonagem animal.

19.
J Neurovirol ; 22(6): 725-735, 2016 12.
Article in English | MEDLINE | ID: mdl-27311457

ABSTRACT

Oncolytic viruses have the ability to infect tumor cells and leave healthy cells intact. In this study, bovine herpesvirus 1 (BHV1; Los Angeles, Cooper, and SV56/90 strains) and bovine herpesvirus 5 (BHV5; SV507/99 and GU9457818 strains) were used to infect two neuronal tumor cell lineages: neuro2a (mouse neuroblastoma cells) and C6 (rat glial cells). BHV1 and BHV5 strains infected both cell lines and positively correlated with viral antigen detection (p < 0.005). When neuro2a cells were infected by Los Angeles, SV507/99, and GU9457818 strains, 40 % of infected cells were under early apoptosis and necroptosis pathways. Infected C6 cells were >40 % in necroptosis phase when infected by BHV5 (GU9457818 strain). Blocking caspase activation did not interfere with cell death. However, when necroptosis was blocked, 60-80 % of both infected cells with either virus switched to early apoptosis pathway with no interference with virus replication. Moreover, reactive oxygen species production and mitochondrial membrane dysfunction were detected at high levels in both infected cell lines. In spite of apoptosis and necroptosis blockage, tumor necrosis factor alpha (TNFA) and virus transcription were positively correlated for all viral strains studied. Thus, these results contribute to the characterization of BHV1 and BHV5 as potential oncolytic viruses for non-human cells. Nonetheless, the mechanisms underlying their oncolytic activity in human cells are still to be determined.


Subject(s)
Apoptosis/genetics , Herpesvirus 1, Bovine/growth & development , Herpesvirus 5, Bovine/growth & development , Necrosis/virology , Neuroglia/virology , Neurons/virology , Animals , Antigens, Viral/genetics , Cattle , Cell Line, Tumor , Gene Expression , Herpesvirus 1, Bovine/genetics , Herpesvirus 5, Bovine/genetics , Host-Pathogen Interactions , Humans , Mice , Mitochondria/metabolism , Mitochondria/virology , Necrosis/genetics , Necrosis/pathology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Oncolytic Viruses/genetics , Oncolytic Viruses/growth & development , Organ Specificity , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Virus Replication
20.
Cell Reprogram ; 18(2): 127-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27055630

ABSTRACT

The less differentiated the donor cells are used in nuclear transfer (NT), the more easily are they reprogrammed by the recipient cytoplasm. In this context, mesenchymal stem cells (MSCs) appear as an alternative to donor nuclei for NT. The amniotic fluid and adipose tissue are sources of MSCs that have not been tested for the production of cloned embryos in cattle. The objective of this study was to isolate, characterize, and use MSCs derived from amniotic fluid (MSC-AF) and adipose tissue (MSC-AT) to produce cloned calves. Isolation of MSC-AF was performed using in vivo ultrasound-guided transvaginal amniocentesis, and MSC-AT were isolated by explant culture. Cellular phenotypic and genotypic characterization by flow cytometry, immunohistochemistry, and RT-PCR were performed, as well as induction in different cell lineages. The NT was performed using MSC-AF and MSC-AT as nuclear donors. The mesenchymal markers of MSC were expressed in bovine MSC-AF and MSC-AT cultures, as evidenced by flow cytometry, immunohistochemistry, and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes, and adipocytes. Embryo production was similar between the cell types, and two calves were born. The calf from MSC-AT was born healthy, and this fact opens a new possibility of using this type of cell to produce cloned cattle by NT.


Subject(s)
Cloning, Organism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Nuclear Transfer Techniques , Animals , Cattle , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...