Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
FEBS Lett ; 598(10): 1252-1273, 2024 May.
Article in English | MEDLINE | ID: mdl-38774950

ABSTRACT

Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Lipid Metabolism , Mitochondria , Mitochondria/metabolism , Humans , Lipid Droplets/metabolism , Animals , Endoplasmic Reticulum/metabolism
2.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37929966

ABSTRACT

Membrane contact sites (MCSs) are areas of close membrane proximity that allow and regulate the dynamic exchange of diverse biomolecules (i.e., calcium and lipids) between the juxtaposed organelles without involving membrane fusion. MCSs are essential for cellular homeostasis, and their functions are ensured by the resident components, which often exist as multimeric protein complexes. MCSs often involve the endoplasmic reticulum (ER), a major site of lipid synthesis and cellular calcium storage, and are particularly important for organelles, such as the mitochondria, which are excluded from the classical vesicular transport pathways. In the last years, MCSs between the ER and mitochondria have been extensively studied, as their functions strongly impact cellular metabolism/bioenergetics. Several proteins have started to be identified at these contact sites, including membrane tethers, calcium channels, and lipid transfer proteins, thus raising the need for new methodologies and technical approaches to study these MCS components. Here, we describe a protocol consisting of combined technical approaches, that include proximity ligation assay (PLA), mitochondria staining, and 3D imaging segmentation, that allows the detection of proteins that are physically close (>40 nm) to each other and that reside on the same membrane at ER-mitochondria MCSs. For instance, we used two ER-anchored lipid transfer proteins, ORP5 and ORP8, which have previously been shown to interact and localize at ER-mitochondria and ER-plasma membrane MCSs. By associating the ORP5-ORP8 PLA with cell imaging software analysis, it was possible to estimate the distance of the ORP5-ORP8 complex from the mitochondrial surface and determine that about 50% of ORP5-ORP8 PLA interaction occurs at ER subdomains in close proximity to mitochondria.


Subject(s)
Calcium , Mitochondria , Endoplasmic Reticulum , Mitochondrial Membranes , Lipids
3.
Cell Rep ; 42(11): 113376, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37917588

ABSTRACT

Dysregulation of mitochondrial lipidome is associated with several human pathologies. Sun et al.1 show that LPGAT1 cooperates with TIMM14 to regulate phosphatidylglycerol transport from the endoplasmic reticulum to the mitochondria, and uncover the involvement of LPGAT1 deficiency in MEGDEL syndrome.


Subject(s)
Mitochondria , Phosphatidylglycerols , Humans , Phosphatidylglycerols/metabolism , Mitochondria/pathology , Endoplasmic Reticulum/metabolism
5.
Photosynth Res ; 154(1): 57-74, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057004

ABSTRACT

Photosynthesis vs. light curves (LCs) have played a central role in photosynthesis research for decades. They are the commonest form of describing how photosynthesis responds to changes in light, being frequently used for characterizing photoacclimation. However, LCs are often interpreted exclusively regarding the response to light intensity, the effects of time of exposure not being explicitly considered. This study proposes the use of 'hysteresis light curves' (HLC), an experimental protocol focused on the cumulative effects of light exposure to obtain information on the time dependence of photosynthetic light responses. HLC are generated by exposing samples to a symmetrical sequence of increasing and decreasing light levels. The comparison of the light-increasing and the light-decreasing phases allows the quantification of the hysteresis caused by high-light exposure, the magnitude and direction of which inform on the activation, and subsequent relaxation of high-light-induced photosynthetic processes. HLCs of the chlorophyll fluorescence indices rETR (relative electron transport rate of photosystem II) and Y(NPQ) (index of non-photochemical quenching) were measured on cyanobacteria, algae, and plants, with the aim of identifying main patterns of hysteresis and their diversity. A non-parametric index is proposed to quantify the magnitude and direction of hysteresis in HLCs of rETR and Y(NPQ). The results of this study show that HLCs can provide additional relevant information on the time dependence of the light response of photosynthetic samples, not obtainable from conventional LCs, useful for phenotyping photosynthetic traits, including photoacclimation state and kinetics of light activation and relaxation of electron flow and energy dissipation processes.


Subject(s)
Cyanobacteria , Photosystem II Protein Complex , Chlorophyll/chemistry , Cyanobacteria/metabolism , Electron Transport/physiology , Fluorescence , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Plants/metabolism
6.
Cell Rep ; 40(12): 111364, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130504

ABSTRACT

Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.


Subject(s)
Mitochondrial Proteins , Phosphatidylserines , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Phosphatidylserines/metabolism
7.
J Cell Biol ; 221(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35969857

ABSTRACT

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER). The ER protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at mitochondria-associated ER membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulates seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis and maturation at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at the membrane contact sites.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Mitochondria , Receptors, Steroid , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Mitochondria/metabolism , Phospholipids/metabolism , Receptors, Steroid/metabolism
8.
Environ Toxicol Pharmacol ; 94: 103925, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35835282

ABSTRACT

This study assessed the effects of Bisphenol A in embryonic stages of zebrafish, applying an IBR multi-biomarker approach that included alterations in growth and oxidative status and relates it with the expression of Nrf1, Nrf2, Wnt3a, Wnt8a, COX-2, Qdpra, and DKK1 genes. For this purpose, we exposed zebrafish embryos to eight environmentally relevant concentrations of BPA (220, 380, 540, 700, 860, 1180, 1340, and 1500 ng L-1) until 96 h post-fertilization. Our results show that BPA induces several malformations in embryos (developmental delay, hypopigmentation, tail malformations, and on), leading to their death. The LC50, EC50 of malformations, and teratogenic index (TI) were 1234.60 ng L-1, 987.77 ng L-1, and 1.25, respectively; thus, this emerging contaminant is teratogenic. Regarding oxidative stress and gene expression, we demonstrated BPA altered oxidative status and the gene expression in embryos of Danio rerio.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Benzhydryl Compounds , Biomarkers/metabolism , Embryo, Nonmammalian , Embryonic Development , Phenols , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
9.
Sci Total Environ ; 834: 155359, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35460791

ABSTRACT

Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Oxidative Stress , Phenytoin/metabolism , Phenytoin/toxicity , Protein Carbonylation , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
10.
Sci Total Environ ; 829: 154656, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35318057

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are pharmaceuticals whose consumption has increased significantly. They are prescribed as first-line treatment in mental disorders such as depression, obsessive-compulsive disorder, phobias, and anxiety; also, they are indicated as adjuvants in diseases such as fibromyalgia and bulimia nervosa. In addition to being linked to the illegal market to be consumed as recreational drugs. The relevance of this review lies in the fact that worldwide consumption has increased significantly during the COVID-19 pandemic, due to the depression and anxiety that originated in the population. As a consequence of this increase in consumption, concentrations of SSRIs in the environment have increased, and these have become a relevant issue for toxicologists due to the effects that they could generate in different organisms, both aquatic and terrestrial. For this reason, the objective of this article was to do a critical evaluation of the existing data on the characteristics and physicochemical properties of SSRIs, consumption data during the COVID-19 pandemic, its occurrence in the environment and the reports of toxic effects that have been generated in different organisms; we also conclude with an updated review of different methods that have been used for their removal. With this analysis, it can be concluded that, despite SSRIs are pharmaceutical products widely studied since their launching to the market, still currently under investigation to clarify their mechanisms of action to understand the different effects on the organisms, adverse reactions, as well as possible toxicological effects on non-target organisms. On the other hand, it has been proven that although it is already possible to eliminate a significant percentage of SSRIs in the laboratory, due to their physicochemical characteristics and their behavior in complex mixtures in the environment, they have not yet been eradicated, showing a persistence in the soil, subsoil and surface waters of the entire planet that may represent a future risk.


Subject(s)
COVID-19 , Selective Serotonin Reuptake Inhibitors , Antidepressive Agents/therapeutic use , Environment , Humans , Pandemics , Selective Serotonin Reuptake Inhibitors/analysis
11.
Neurotoxicology ; 90: 121-129, 2022 05.
Article in English | MEDLINE | ID: mdl-35304135

ABSTRACT

Fluoxetine (FLX) exerts its therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. Nonetheless, at high concentrations of this drug, adverse effects occur in the brain of exposed organisms. Bearing this into account, the objective of this study was to evaluate the neurotoxic effects of the fluoxetine through the evaluation of behavior (Novel tank test), determination of oxidative stress, and determination of acetylcholinesterase (AChE) activity in adult zebrafish Danio rerio. For this purpose, Danio rerio adults were exposed to three environmentally relevant concentrations (5, 10, 16 ng L-1) of FLX for 96 h. Our results demonstrate fish presented a significant disruption in their behavior, as they remained long-lasting time frozen at the top of the tank. Since we observed a significant reduction of AChE activity in the brain of fish, we believe the above described anxiety-like state is the result of this enzyme impairment. Moreover, as FLX-exposed fish showed a significant increase in the levels of oxidative damage biomarkers, we suggest this AChE disruption is associated with the oxidative stress response fish exhibited. Based on our findings, we believe the environmentally relevant concentration of FLX alters the redox status of the brain, impairing this way the behavior of fish and making them more vulnerable to predation.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Acetylcholinesterase/metabolism , Animals , Fluoxetine/toxicity , Oxidative Stress , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
12.
Chemosphere ; 294: 133791, 2022 May.
Article in English | MEDLINE | ID: mdl-35104548

ABSTRACT

Several studies have indicated that hospital effluents can produce genotoxic and mutagenic effects, cytotoxicity, hematological and histological alterations, embryotoxicity, and oxidative stress in diverse water organisms, but research on the neurotoxic effects hospital wastewater materials can generate in fish is still scarce. To fill the above-described knowledge gap, this study aimed to determine whether the exposure of adult zebrafish (Danio rerio) to several proportions (0.1%, 2.5%, 3.5%) of a hospital effluent can disrupt behavior or impair redox status and acetylcholinesterase content in the brain. After 96 h of exposure to the effluent, we observed a decrease in total distance traveled and an increase in frozen time compared to the control group. Moreover, we also observed a significant increase in the levels of reactive oxygen species in the brains of the fish, especially in hydroperoxide and protein carbonyl content, relative to the control group. Our results also demonstrated that hospital effluents significantly inhibited the activity of the AChE enzyme in the brains of the fish. Our Pearson correlation demonstrated that the response to acetylcholinesterase at the lowest proportions (0.1% and 2.5%) is positively related to the oxidative stress response and the behavioral changes observed. The cohort of our studies demonstrated that the exposure of adult zebrafish to a hospital effluent induced oxidative stress and decreased acetylcholinesterase activity in the brain of these freshwater organisms, which can lead to alterations in their behavior.


Subject(s)
Acetylcholinesterase , Behavior, Animal , Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Acetylcholinesterase/metabolism , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/enzymology , Hospitals , Humans , Mexico , Oxidative Stress/drug effects , Protein Carbonylation/drug effects , Swimming , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
13.
Article in English | MEDLINE | ID: mdl-34990834

ABSTRACT

Phenytoin (PHE) is an antiepileptic drug that has been widely used in clinical practice for about 80 years. It is mainly used in the treatment of tonic-clonic and partial seizures. The widespread consumption of this drug around the world has led to PHE being introduced into water bodies through municipal, hospital, and industrial effluent discharges. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of low (25-400 ngL-1) and high (500-1500 ngL-1) environmentally relevant concentrations of PHE on the development and oxidative status of zebrafish (Danio rerio) embryos. The toxicity of PHE was evaluated from 12 to 96 h after fertilization in D. rerio at concentrations between 25 and 1500 ngL-1. In both the control group and the 0.05% DMSO system, no malformations were observed, all embryos developed normally after 96 h. The severity and frequency of malformations increased with increasing PHE concentration compared to embryos in the control group. Malformations observed included developmental delay, hypopigmentation, miscellaneous (more than one malformation in the same embryo), modified chorda structure, tail malformation, and yolk deformation. Concerning the biomarkers of oxidative stress, an increase in the degree of lipid peroxidation, protein carbonylation, and hydroperoxide content was observed (p < 0.05) concerning the control. In addition, a significant increase (p < 0.05) in antioxidant enzymes (SOD, CAT, and GPx) was observed at low exposure concentrations (25-400 ngL-1), with a decrease in enzyme activity at high concentrations (500-1500 ngL-1). Our IBR analysis demonstrated that oxidative damage biomarkers got more influence at 500ngL-1 of PHE. The results demonstrated that PHE may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.


Subject(s)
Embryo, Nonmammalian/drug effects , Oxidative Stress/drug effects , Phenytoin/toxicity , Zebrafish/embryology , Animals , Antioxidants/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Enzymes/metabolism , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity , Zebrafish Proteins/metabolism
14.
Sci Total Environ ; 807(Pt 3): 151048, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34673069

ABSTRACT

Fluoxetine (FLX) is a psychoactive drug that acts as an antidepressant. FLX is one of the world's best-selling prescription antidepressants. FLX is widely used for the treatment of various psychiatric disorders. For these reasons, this drug may eventually end up in the aquatic environment via municipal, industrial, and hospital discharges. Even though the occurrence of FLX in aquatic environments has been reported as ubiquitous, the toxic effects that this drug may induce, especially at environmentally relevant concentrations, on essential biological processes of aquatic organisms require more attention. In the light of this information, this work aimed to investigate the influence that fluoxetine oxidative stress-induced got over the embryonic development of Danio rerio. For this purpose, D. rerio embryos (4 h post fertilization) were exposed to environmentally relevant concentrations (5, 10, 15, 20, 25, 30, 35, and 40 ng L-1) of fluoxetine, until 96 h post fecundation. Along the exposure, survival, alterations to embryonic development, and teratogenic effects were evaluated using a stereomicroscope. Furthermore, oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation, hydroperoxide, and carbonyl content) were evaluated at 72 and 96 h post fecundation. LC50, EC50m, and teratogenic index were 30 ng L-1, 16 ng L-1, and 1.9, respectively. The main teratogenic effects induced by fluoxetine were pericardial edema, hatching retardation, spine alterations and craniofacial malformations. Concerning oxidative stress, our integrated biomarkers (IBR) analysis demonstrated that as the concentration increased, oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, fluoxetine induces an important oxidative stress response on the embryos of D. rerio. Collectively, our results allow us to concluded that FLX is a dangerous drug in the early life stages of D. rerio due to its high teratogenic potential and that FLX-oxidative stress induced may be involved in this toxic process.


Subject(s)
Fluoxetine , Zebrafish , Animals , Embryonic Development , Fluoxetine/toxicity , Humans , Lipid Peroxidation , Oxidative Stress
15.
Sci Total Environ ; 768: 145487, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736324

ABSTRACT

Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.


Subject(s)
Migraine Disorders , Water Pollutants, Chemical , Anticonvulsants , Humans , Migraine Disorders/drug therapy , Wastewater , Water Pollutants, Chemical/analysis
16.
Neuromolecular Med ; 23(1): 99-117, 2021 03.
Article in English | MEDLINE | ID: mdl-33085065

ABSTRACT

Bile acids are signalling hormones involved in the regulation of several metabolic pathways. The ability of bile acids to bind and signal through their receptors is modulated by the gut microbiome, since the microbiome contributes to the regulation and synthesis of bile acids as well to their physiochemical properties. From the gut, bacteria have been shown to send signals to the central nervous system via their metabolites, thus affecting the behaviour and brain function of the host organism. In the last years it has become increasingly evident that bile acids affect brain function, during normal physiological and pathological conditions. Although bile acids may be synthesized locally in the brain, the majority of brain bile acids are taken up from the systemic circulation. Since the composition of the brain bile acid pool may be regulated by the action of intestinal bacteria, it is possible that bile acids function as a communication bridge between the gut microbiome and the brain. However, little is known about the molecular mechanisms and the physiological roles of bile acids in the central nervous system. The possibility that bile acids may be a direct link between the intestinal microbiome and the brain is also an understudied subject. Here we review the influence of gut bacteria on the bile acid pool composition and properties, as well as striking evidence showing the role of bile acids as neuroactive molecules.


Subject(s)
Bile Acids and Salts/metabolism , Brain/metabolism , Gastrointestinal Microbiome , Animals , Cholesterol/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eating , Enterochromaffin Cells/metabolism , Fermentation , Gallbladder/metabolism , Germ-Free Life , Humans , Liver/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurotransmitter Agents/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Stroke/metabolism , Xanthomatosis, Cerebrotendinous/metabolism
17.
Adv Drug Deliv Rev ; 159: 54-93, 2020.
Article in English | MEDLINE | ID: mdl-32423566

ABSTRACT

Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired ß-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.


Subject(s)
Cardiovascular Diseases/metabolism , Lipid Metabolism , Animals , Cardiovascular Diseases/therapy , Humans , Lipoproteins, HDL/metabolism
18.
Mol Ecol Resour ; 19(5): 1164-1180, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31012255

ABSTRACT

Organisms sampled for population-level research are typically assigned to species by morphological criteria. However, if those criteria are limited to one sex or life stage, or the organisms come from a complex of closely related forms, the species assignments may misdirect analyses. The impact of such sampling can be assessed from the correspondence of genetic clusters, identified only from patterns of genetic variation, to the species identified using only phenotypic criteria. We undertook this protocol with the rock-dwelling mbuna cichlids of Lake Malawi, for which species within genera are usually identified using adult male coloration patterns. Given high local endemism of male colour patterns, and considerable allele sharing among species, there persists considerable taxonomic uncertainty in these fishes. Over 700 individuals from a single transect were photographed, genotyped and separately assigned: (a) to morphospecies using photographs; and (b) to genetic clusters using five widely used methods. Overall, the correspondence between clustering methods was strong for larger clusters, but methods varied widely in estimated number of clusters. The correspondence between morphospecies and genetic clusters was also strong for larger clusters, as well as some smaller clusters for some methods. These analyses generally affirm (a) adult male-limited sampling and (b) the taxonomic status of Lake Malawi mbuna, as the species in our study largely appear to be well-demarcated genetic entities. More generally, our analyses highlight the challenges for clustering methods when the number of populations is unknown, especially in cases of highly uneven sample sizes.


Subject(s)
Biota , Cichlids/classification , Genetics, Population/methods , Genotyping Techniques/methods , Anatomy, Comparative/methods , Animals , Cichlids/anatomy & histology , Cichlids/genetics , Lakes , Malawi
19.
Sci Total Environ ; 622-623: 1131-1142, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29890582

ABSTRACT

Microplastics and antimicrobials are widely spread environmental contaminants and more research on their toxicity is needed. The uptake and effects of the antimicrobial florfenicol, microplastics, and their mixtures on Corbicula fluminea were investigated. Bivalves were exposed for 96h to florfenicol (1.8 and 7.1mg/l), microplastics (0.2 and 0.7mg/l), or mixtures of the two substances. After 96h, all bivalves exposed to antimicrobial treatments had florfenicol in their body (e.g. 2±1µg/g). Microplastics were found in the gut, lumen of the digestive gland, connective tissue, hemolymphatic sinuses, and gills surface of animals. Florfenicol caused a significant inhibition of cholinesterase (ChE) activity (~32%). Animals exposed to 0.2mg/l of microplastics showed ChE activity inhibition (31%), and no other significant alterations. Mixtures caused feeding inhibition (57-83%), significant ChE inhibition (44-57%) and of isocitrate dehydrogenase activity, and increased anti-oxidant enzymes activity and lipid peroxidation levels. Overall, the results indicate that C. fluminea take up florfenicol and microplastics from the water and accumulated or at least retained it in their body for some time; both florfenicol (low ppm range) and microplastics (ppb range) were toxic to C. fluminea, with mixtures containing florfenicol and microplastics being more toxic. Thus, the risk of exposure and toxic effects of florfenicol to C. fluminea and other bivalves, and its predators increase in ecosystems contaminated with the antimicrobial and microplastics, as well as to humans consuming contaminated species from these ecosystems.


Subject(s)
Anti-Bacterial Agents/toxicity , Plastics/toxicity , Thiamphenicol/analogs & derivatives , Water Pollutants, Chemical/toxicity , Animals , Corbicula , Introduced Species , Lipid Peroxidation/drug effects , Thiamphenicol/toxicity
20.
Environ Pollut ; 237: 318-328, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29499575

ABSTRACT

Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.


Subject(s)
Brain/physiology , Environmental Monitoring , Mercury/toxicity , Smegmamorpha/physiology , Water Pollutants, Chemical/toxicity , Animals , Environmental Exposure , Estuaries , Fishes , Mercury/analysis , Mercury/metabolism , Portugal , Seasons , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...