Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 173(Pt 2): 113388, 2023 11.
Article in English | MEDLINE | ID: mdl-37803726

ABSTRACT

Aspergillus ochraceus is an ochratoxin-producing fungus which contaminates coffee. In this study the antifungal effect of the yeast Hanseniaspora opuntiae on three Aspergillus ochraceus strains (IOC 4417, IOC 4462, Ao 14) was evaluated in vitro and on coffee fruits. H. opuntiae (106 and 107 cells mL-1) reduced in vitro fungal growth from 82% to 87%, when co-cultivated with A. ochraceus. The yeast cell free supernatant (CFS) inhibited conidial germination from 76.5% to 92.5%, and hyphal growth from 54% to 78%. The yeast (107 and 109 cells mL-1) applied on coffee fruits delayed fruit decay by A. ochraceus (IOC 4417 and Ao 14) until the 9th day, and was significantly different (p < 0.05) from the controls. Furthermore, the ultrastructure of the yeast-fungus interaction on the coffee fruit surface showed yeast attachment to A. ochraceus hyphae, and morphological alterations in fungal structures, with hyphal abnormalities, such as tortuous hyphae with irregular, non-uniform surface compared to the control without yeast. H. opuntiae showed efficacy as biocontrol agent and, to the best of our knowledge, this is the first study on the antifungal activity of H. opuntiae against A. ochraceus on coffee fruits Nevertheless, application of H. opuntiae to the crop in the field requires further studies.


Subject(s)
Aspergillus ochraceus , Coffee , Coffee/metabolism , Fruit/microbiology , Antifungal Agents/pharmacology
2.
J Appl Microbiol ; 134(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37537147

ABSTRACT

AIMS: The aims of this study were to evaluate the potential of Hanseniaspora opuntiae, Meyerozyma caribbica, and Kluyveromyces marxianus for in vitro biocontrol of Aspergillus ochraceus, A. westerdijkiae, and A. carbonarius growth, the ochratoxin A (OTA) effect on yeast growth, and yeast in vitro OTA detoxification ability using an experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration. METHODS AND RESULTS: Predictive models were developed using an incomplete Box-Behnken experimental design to predict the combined effects of inoculum size, incubation time, and OTA concentration on OTA detoxification by the yeasts. The yeasts were able to inhibit fungal growth from 13% to 86%. Kluyveromyces marxianus was the most efficient in inhibiting the three Aspergillus species. Furthermore, high OTA levels (100 ng ml-1) did not affect yeast growth over 72 h incubation. The models showed that the maximum OTA detoxification under optimum conditions was 86.8% (H. opuntiae), 79.3% (M. caribbica), and 73.7% (K. marxianus), with no significant difference (P > 0.05) between the values predicted and the results obtained experimentally. CONCLUSION: The yeasts showed potential for biocontrol of ochratoxigenic fungi and OTA detoxification, and the models developed are important tools for predicting the best conditions for the application of these yeasts as detoxification agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...