Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JAC Antimicrob Resist ; 3(4): dlab168, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34806007

ABSTRACT

BACKGROUND: The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas' disease (CD), a neglected illness affecting >6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the modified purine ring of a nucleoside 'hit' led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(3'-deoxy-ß-d-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity. OBJECTIVES: To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, covering cell culture sterilization through washout assays, drug combination with benznidazole and long-term administration in T. cruzi-infected mice. RESULTS: Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indicated no interaction (additive effect) (FIC index = 0.72) while administration to mice at one-tenth of the optimal dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (>98% decline) and 100% mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into the supernatant of infected cardiac cultures was reduced by >94%, parasite recrudescence did occur after treatment. CONCLUSIONS: Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic failure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug resistance.

2.
ChemMedChem ; 16(14): 2231-2253, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33856742

ABSTRACT

Chagas disease is a tropical infectious disease resulting in progressive organ-damage and currently lacks efficient treatment and vaccine options. The causative pathogen, Trypanosoma cruzi, requires uptake and processing of preformed purines from the host because it cannot synthesize these de novo, instigating the evaluation of modified purine nucleosides as potential trypanocides. By modifying the pyrimidine part of a previously identified 7-aryl-7-deazapurine nucleoside, we found that substitution of a 6-methyl for a 6-amino group allows retaining T. cruzi amastigote growth inhibitory activity but confers improved selectivity towards mammalian cells. By keeping the 6-methyl group unaltered, and introducing different 7-aryl groups, we identified several analogues with sub-micromolar antitrypanosomal activity. The 7-(4-chlorophenyl) analogue 14, which was stable in microsomes, was evaluated in an acute mouse model. Oral administration of 25 mg/kg b.i.d. suppressed peak parasitemia and protected mice from infection-related mortality, gave similar reductions as the reference drug of blood parasite loads determined by qPCR, but as benznidazole failed to induce sterile cure in the short time period of drug exposure (5 days).


Subject(s)
Nucleosides/pharmacology , Purines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Parasitic Sensitivity Tests , Purines/chemical synthesis , Purines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
3.
Microorganisms ; 9(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924674

ABSTRACT

Human African trypanosomiasis is a neglected parasitic disease for which the current treatment options are quite limited. Trypanosomes are not able to synthesize purines de novo and thus solely depend on purine salvage from the host environment. This characteristic makes players of the purine salvage pathway putative drug targets. The activity of known nucleoside analogues such as tubercidin and cordycepin led to the development of a series of C7-substituted nucleoside analogues. Here, we use RNA interference (RNAi) libraries to gain insight into the mode-of-action of these novel nucleoside analogues. Whole-genome RNAi screening revealed the involvement of adenosine kinase and 4E interacting protein into the mode-of-action of certain antitrypanosomal nucleoside analogues. Using RNAi lines and gene-deficient parasites, 4E interacting protein was found to be essential for parasite growth and infectivity in the vertebrate host. The essential nature of this gene product and involvement in the activity of certain nucleoside analogues indicates that it represents a potential novel drug target.

4.
J Med Chem ; 64(7): 4206-4238, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33784107

ABSTRACT

Chagas disease and visceral leishmaniasis are two neglected tropical diseases responsible for numerous deaths around the world. For both, current treatments are largely inadequate, resulting in a continued need for new drug discovery. As both kinetoplastid parasites are incapable of de novo purine synthesis, they depend on purine salvage pathways that allow them to acquire and process purines from the host to meet their demands. Purine nucleoside analogues therefore constitute a logical source of potential antiparasitic agents. Earlier optimization efforts of the natural product tubercidin (7-deazaadenosine) involving modifications to the nucleobase 7-position and the ribofuranose 3'-position led to analogues with potent anti-Trypanosoma brucei and anti-Trypanosoma cruzi activities. In this work, we report the design and synthesis of pyrazolo[3,4-d]pyrimidine nucleosides with 3'- and 7-modifications and assess their potential as anti-Trypanosoma cruzi and antileishmanial agents. One compound was selected for in vivo evaluation in an acute Chagas disease mouse model.


Subject(s)
Nucleosides/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/drug therapy , Drug Design , Drug Stability , Humans , Leishmania infantum/drug effects , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology
5.
Parasitology ; 148(1): 98-104, 2021 01.
Article in English | MEDLINE | ID: mdl-33023678

ABSTRACT

Cutaneous leishmaniasis (CL) is one of the most disregarded tropical neglected disease with the occurrence of self-limiting ulcers and triggering mucosal damage and stigmatizing scars, leading to huge public health problems and social negative impacts. Pentavalent antimonials are the first-line drug for CL treatment for over 70 years and present several drawbacks in terms of safety and efficacy. Thus, there is an urgent need to search for non-invasive, non-toxic and potent drug candidates for CL. In this sense, we have implemented a shape-based virtual screening approach and identified a set of 32 hit compounds. In vitro phenotypic screenings were conducted using these hit compounds to check their potential leishmanicidal effect towards Leishmania amazonensis (L. amazonensis). Two (Cp1 and Cp2) out of the 32 compounds revealed promising antiparasitic activities, exhibiting considerable potency against intracellular amastigotes present in peritoneal macrophages (IC50 values of 9.35 and 7.25 µm, respectively). Also, a sterile cidality profile was reached at 20 µm after 48 h of incubation, besides a reasonable selectivity (≈8), quite similarly to pentamidine, a diamidine still in use clinically for leishmaniasis. Cp1 with an oxazolo[4,5-b]pyridine scaffold and Cp2 with benzimidazole scaffold could be developed by lead optimization studies to enhance their leishmanicidal potency.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical , Leishmaniasis, Cutaneous/drug therapy , Macrophages, Peritoneal/parasitology , Animals , Benzimidazoles/pharmacology , Cells, Cultured , Disease Models, Animal , In Vitro Techniques , Inhibitory Concentration 50 , Leishmania/drug effects , Mice , Mice, Inbred BALB C , Oxazoles/pharmacology , Pentamidine/pharmacology , Pyridones/pharmacology
6.
J Antimicrob Chemother ; 75(4): 958-967, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31860098

ABSTRACT

BACKGROUND: Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES: As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS: In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS: Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS: The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Humans , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
7.
Bioorg Med Chem ; 27(14): 3061-3069, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31176565

ABSTRACT

Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ±â€¯0.9 µM and 29 ±â€¯5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmania/enzymology , Pyrimidines/therapeutic use , Antiprotozoal Agents/pharmacology , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...