Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Lett Appl Microbiol ; 61(2): 158-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963798

ABSTRACT

UNLABELLED: α-Defensins produced by neutrophils are important effector molecules of the innate immune system. In addition to their microbicidal effects, α-defensins have the ability to neutralize bacterial toxins. Panton-Valentine leukocidin (PVL) is the hallmark of community-acquired methicillin-resistant Staphylococcus aureus. Staphylococcus aureus that produce PVL are responsible for severe diseases, including necrotizing pneumonia. Polymorphonuclear neutrophils (PMNs) are the target cells of PVL action. The goal of this study was to elucidate the effect of a group of α-defensins known as the human neutrophil peptides (HNPs) on the interactions between LukS-PV and LukF-PV, which compose PVL, and human PMNs. We observed that HNPs bound to both subunits of PVL and significantly decreased PVL pore formation in PMNs, with a maximum inhibition of 27%. When various HNP molecules were tested individually under the same conditions, we observed that HNP3, but not HNP1 or 2, decreased pore formation. Similarly, HNP3 significantly decreased PVL-induced PMN lysis, with a maximum inhibition of 31%. Interestingly, HNPs did not affect LukS-PV LukF-PV oligomerization, LukS-PV LukF-PV binding to PMNs or calcium influx induced by PVL in PMNs. Our results suggest that HNP3 partially protects neutrophils against PVL by interfering with the conformational changes of PVL required to form a functional pore. SIGNIFICANCE AND IMPACT OF THE STUDY: Panton-Valentine leukocidin (PVL) is a pore-forming toxin produced by Staphylococcus aureus, responsible for neutrophil damage and key player of severe staphylococcal diseases. Antimicrobial peptides produced by neutrophils (HNP1-3) neutralize several other bacterial cytotoxins. We examined the impact of human neutrophil peptides (HNPs) on PVL cytotoxicity against human neutrophils and we found that HNPs bind to both LukS and LukF components of PVL, thereby inhibiting pore formation and neutrophil lysis. Our results suggest that HNP3 may impair PVL conformational changes required to form a functional pore and provide insight into the pathogenesis of PVL-related staphylococcal infection, with potential impact on the disease outcome.


Subject(s)
Bacterial Toxins/toxicity , Exotoxins/toxicity , Leukocidins/toxicity , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Neutrophils/enzymology , Staphylococcal Infections/immunology , alpha-Defensins/metabolism , Bacterial Proteins/metabolism , Humans , Leukocidins/metabolism , Neutrophils/immunology
3.
Int J Antimicrob Agents ; 45(1): 19-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450803

ABSTRACT

Community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA) causes severe diseases through virulence factors such as staphylococcal protein A (SpA), which favours immune evasion. We have previously shown that antimicrobial peptides (AMPs) and antibiotics decrease SpA expression in CA-MRSA strains. Here we examined the effects of antibiotics and AMPs, alone and in combination, on SpA expression in various CA-MRSA strains. Six S. aureus isolates corresponding to the major worldwide CA-MRSA clones (ST8-USA300, ST80 and ST30) were selected. Strains were cultured to exponential growth phase and were subsequently incubated with antibiotics (tigecycline, linezolid, clindamycin and vancomycin) at 0.25× MIC or with AMPs [human neutrophil peptide (HNP)-1-3] at the LD50, alone and in combination. After 6h, cultures were assessed for spa mRNA by RT-PCR, whilst SpA protein was measured by specific ELISA after 18h. When used alone, antibiotics (clindamycin, linezolid and tigecycline) or HNPs significantly reduced both SpA production and mRNA levels in ST30 and ST80 strains. When used in combination, HNPs and clindamycin, linezolid or tigecycline synergistically reduced SpA production (6-100-fold) and spa mRNA levels (4-20-fold) in ST80 and ST30 strains. In contrast, for USA300 strains, among all antibiotics, clindamycin alone reduced SpA production (3.5-fold), whereas with combined treatments including HNPs, only a slight reduction in SpA production (1.7-2.2-fold) was observed. In conclusion, antibiotics and AMPs do not modulate SpA expression in USA300, unlike in other CA-MRSA clones. This observation suggests that the virulence and successful spread of USA300 strains is associated with a specific regulatory network.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Protein A/biosynthesis , Virulence Factors/biosynthesis , Community-Acquired Infections/microbiology , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Real-Time Polymerase Chain Reaction , Staphylococcal Infections/microbiology , Staphylococcal Protein A/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...