Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(29): 20050-20057, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37409047

ABSTRACT

This work reports the synthesis, structural, spectroscopic and magnetic investigation of two complexes, [Co(bmimapy)(3,5-DTBCat)]PF6·H2O (1) and [Co(bmimapy)(TCCat)]PF6·H2O (2), where bmimapy is an imidazolic tetradentate ancillary ligand and 3,5-DTBCat and TCCat are the 3,5-di-tert-butyl-catecholate and tetrachlorocatecholate anions, respectively. Their structures have been elucidated using single crystal X-ray diffraction, showing a pseudo-octahedral cobalt ion bound to a chelating dioxolene ligand and the ancillary bmimapy ligand in a folded conformation. Magnetometry displayed an entropy-driven, incomplete, Valence Tautomeric (VT) process for 1 in the 300-380 K temperature range, while 2 displayed a temperature independent, diamagnetic low-spin cobalt(iii)-catecholate charge distribution. This behaviour was interpreted on the basis of the cyclic voltammetric analysis, allowing the estimation of the free energy difference associated with the VT interconversion of +8 and +96 kJ mol-1 for 1 and 2, respectively. A DFT analysis of this free energy difference highlighted the ability of the methyl-imidazole pendant arm of bmimapy favouring the onset of the VT phenomenon. This work introduces the imidazolic bmimapy ligand to the scientific community working in the field of valence tautomerism, increasing the library of ancillary ligands to prepare temperature switchable molecular magnetic materials.

2.
Phys Chem Chem Phys ; 23(46): 26561-26574, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34811562

ABSTRACT

Silole derivatives have been extensively employed for developing organic optoelectronics, but few studies focused on the photophysical properties of the silole molecule. In this work, we investigate these properties by computing the absorption spectra and performing nonadiabatic molecular dynamics of silole employing the algebraic diagrammatic construction [ADC(2)] and extended multi-state XMS-CASPT2 ab initio electronic structure methods. For vertical excitations and excited state optimizations, the equation of motion coupled-cluster singles and doubles (EOM-CCSD) was also used. The nuclear ensemble and the fewest-switches surface hopping molecular dynamics methods coupled with the first two high-level electronic structure methods were applied to probe the relaxation mechanisms of silole. We could reproduce the experimental first absorption maximum value and found an ultrafast relaxation process occurring exclusively through ring-puckering distortions without breaking ring bonds or hydrogen elimination. Minimum energy conical intersection optimizations were carried out and potential energy curves, including triplet states, were calculated to further elucidate the relaxation process of silole.

3.
Phys Chem Chem Phys ; 21(26): 13916-13924, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-30570626

ABSTRACT

Excimers play a key role in a variety of excited-state processes, such as exciton trapping, fluorescence quenching, and singlet-fission. The dynamics of benzene excimer formation in the first 2 ps after S1 excitation from the parallel-displaced geometry of the benzene dimer is reported here. It was simulated via nonadiabatic surface-hopping dynamics using the second-order algebraic diagrammatic construction (ADC(2)). After excitation, the benzene rings take ∼0.5-1.0 ps to approach each other in a parallel-stacked structure of the S1 minimum and stay in the excimer region for ∼0.1-0.4 ps before leaving due to excess vibrational energy. The S1-S2 gap widens considerably while the rings visit the excimer region in the potential energy surface. Our work provides detailed insight into correlations between nuclear and electronic structure in the excimer and shows that decreased ring distance goes along with enhanced charge transfer and that fast exciton transfer happens between the rings, leading to the equal probability of finding the exciton in each ring after around 1.0 ps.

4.
J Phys Chem A ; 119(21): 5335-43, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25531385

ABSTRACT

The generalized product function energy partitioning (GPF-EP) method has been applied to investigate the nature of the chemical bond and the origin of the inverted dipole moment of the BF molecule. The calculations were carried out with GPF wave functions treating all of the core electrons as a single Hartree-Fock group and the valence electrons at the generalized valence bond perfect-pairing (GVB-PP) or full GVB levels, with the cc-pVTZ basis set. The results show that the chemical structure of both X (1)Σ(+) and a (3)Π states is composed of a single bond. The lower dissociation energy of the excited state is attributed to a stabilizing intraatomic singlet coupling involving the B 2sp-like lobe orbitals after bond dissociation. An increase of electron density on the B atom caused by the reorientation of the boron 2sp-like lobe orbitals is identified as the main responsible effect for the electric dipole inversion in the ground state of BF. Finally, it is shown that π back-bonding from fluorine to boron plays a minor role in the electron density displacement to the bonding region in both states. Moreover, this effect is associated with changes in the quasi-classical component of the electron density only and does not contribute to covalency in either of the states. Therefore, at least for the case of the BF molecule, the term back-bonding is misleading, since it does not contribute to the bond formation.

5.
Phys Chem Chem Phys ; 16(22): 11024-30, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24779029

ABSTRACT

The benzene molecule is one of the most emblematic systems in chemistry, with its structural features being present in numerous different compounds. We have carried out an analysis of the influence of quantum mechanical interference on the geometric features of the benzene molecule, showing that many of the characteristics of its equilibrium geometry are a consequence of non-covalent contributions to the energy. This result implies that quasi-classical reasoning should be sufficient to predict the defining aspects of the benzene structure such as its planarity and equivalence of its bond lengths.

6.
J Phys Chem A ; 117(19): 4025-34, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23574507

ABSTRACT

Interference energy for C-H and C-C bonds of a set of saturated hydrocarbons is calculated by the generalized product function energy partitioning (GPF-EP) method in order to investigate its sensitivity to the type of chain and also its contribution to the bond dissociation energy. All GPF groups corresponding to chemical bonds are calculated by use of GVB-PP wave functions to ensure the correct description of bond dissociation. The results show that the interference energies are practically the same for all the C-H bonds, presenting only small variations (0.5 kcal.mol(-1)) due to the structural changes in going from linear to branched and cyclic chains. A similar trend is verified for the C-C bonds, the sole exception being the cyclopropane molecule, for which only the C-C bond exhibits a more significant variation. On the other hand, although the interference energy is quantitatively the most important contribution to the bond dissociation energy (DE), one cannot predict DE only from the bond interference energy. Differences in the dissociation energies of C-C and C-H bonds due to structural changes in the saturated hydrocarbons can be mainly attributed to quasi-classical effects.

7.
Phys Chem Chem Phys ; 14(16): 5479-88, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22410865

ABSTRACT

The nature of the chemical bond in conjugated hydrocarbons is analyzed through the generalized product function energy partitioning (GPF-EP) method, which allows the calculation of the quantum-mechanical interference and quasi-classical contributions to the energy. The method is applied to investigate the differences between the chemical bonding in conjugated and non-conjugated hydrocarbon isomers and to evaluate the contribution from the energy components to the stabilization of the molecules. It is shown that in all cases quantum-mechanical interference has the effect of concentrating π electron density between the two carbon atoms directly involved in the (C-C)π bonds. For the conjugated isomers, this effect is accompanied by a substantial reduction of electron density in the π space of the neighbouring (C-C)σ bond. On the other hand, quasi-classical effects are shown to be responsible for the extra stabilization of the conjugated isomers, in which a decrease of the π space kinetic reference energy seems to play an important role. Finally, it is shown that the polarization of p-like orbitals in compounds with alternating single and double bonds ultimately increases electron density in the π space of the neighbouring (C-C)σ bond. Therefore, quasi-classical effects, rather than covalent ones, seem to be responsible for several properties of conjugated molecules, such as thermodynamic stability, planarity and (C-C)σ bond shortening. The shortcomings of the delocalization concept are discussed.


Subject(s)
Hydrocarbons/chemistry , Quantum Theory
8.
J Phys Chem A ; 114(33): 8798-805, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20527866

ABSTRACT

The nature of the chemical bond in 1,3-butadiene is analyzed by applying the recently developed generalized product function energy partitioning (GPF-EP) scheme, which allows the calculation of the quantum mechanical interference contribution to the energy in a meaningful and intuitive fashion. The method is applied to investigate the breakage of the middle C-C bond, and the rotation along the torsional angle defined by the carbon atoms. A comparison between bonding in ethylene and butadiene is also performed. It is shown that bond delocalization plays no role in the properties of a conjugated molecule and that existing alternative explanations should be revisited.


Subject(s)
Butadienes/chemistry , Ethylenes/chemistry , Kinetics , Molecular Dynamics Simulation , Quantum Theory
9.
J Phys Chem A ; 113(45): 12541-8, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19799455

ABSTRACT

The chemical bond in the N(2) molecule is analyzed from the perspective of the quantum mechanical interference effect by means of the recently developed generalized product function energy partitioning (GPF-EP) scheme. The analysis is carried out at the GVB-PP and SC levels, which constitute interpretable independent particle models, while ensuring the correct dissociation behavior for the molecule. The results suggest that some current ideas concerning the bond in the N(2) molecule should be revised. It is shown that, in the absence of the interference effect, there is no chemical bond in the N(2) molecule. The influence of the basis set on the energy partitioning is also evaluated. The interference contributions to the energy are substantially less sensitive to the choice of the basis set than the reference energy, making the investigation of the relative importance of inteference effects in larger systems feasible.

10.
J Chem Phys ; 130(10): 104102, 2009 Mar 14.
Article in English | MEDLINE | ID: mdl-19292518

ABSTRACT

The main driving force for the formation of the covalent bond is the quantum-mechanical interference effect among one-electron states, as has been suggested in several works by the use of partition schemes to calculate the interference contributions to the energy. However, due to some difficulties associated with the original approaches, calculations were only carried out for a few, mostly diatomic molecules. In this work, we propose a general approach of partitioning based on generalized product functions with generalized valence bond at the perfect pairing approximation and spin-coupled groups, which should allow the investigation of a broader array of molecules, and hopefully, shed light on the nature of the chemical bond in molecules with unusual chemical features. Among other things, this approach lends itself naturally to the investigation of interference in individual bonds or groups of bonds in a molecule.

11.
J Phys Chem A ; 111(34): 8302-7, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17685500

ABSTRACT

This paper reports the first characterization of the (NH(3))(n)NH+ cluster series produced by a 252Cf fission fragments (FF) impact onto a NH(3) ice target. The (NH(3))(n=1-6)NH+ members of this series have been analyzed theoretically and experimentally. Their ion desorption yields show an exponential dependence of the cluster population on its mass, presenting a relative higher abundance at n = 5. The results of DFT/B3LYP calculations show that two main series of ammonium clusters may be formed. Both series follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of the respective {NH(3)NH}+ and {NH(2)NH(2)}+ cores. The energy analysis (i.e., D-plot and stability analysis) shows that the calculated members of the (NH(3))(n-1){NH(2)NH(2)}+ series are more stable than those of the (NH(3))(n-1){NH(3)NH}+ series. The trend on the relative stability of the members of more stable series, (NH(3))(n-1){NH(2)NH(2)}+, shows excellent agreement with the experimental distribution of cluster abundances. In particular, the (NH(3))4{NH(2)NH(2)}+ structure is the most stable one, in agreement with the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...