Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 20: 6431-6442, 2022.
Article in English | MEDLINE | ID: mdl-36467586

ABSTRACT

The BvgAS two-component system regulates virulence gene expression in Bordetella pertussis. Although precise three-dimensional structural information is not available for the response regulator BvgA, its sequence conservation with E. coli NarL and previous studies have indicated that it is composed of 3 domains: an N-terminal domain (NTD) containing the phosphorylation site, a linker, and a DNA-binding C-terminal domain (CTD). Previous work has determined how BvgACTD dimers interact with the promoter (P fhaB ) of fhaB, the gene encoding the virulence adhesin filamentous hemagglutinin. Here we use molecular modeling, FeBABE footprinting, and crosslinking to show that within the transcription complex of phosphorylated BvgA (BvgA âˆ¼ P), B. pertussis RNAP, and P fhaB , the NTDs displace from the CTDs and are positioned at specific locations relative to the three BvgA âˆ¼ P binding sites. Our work identifies a patch of the NTD that faces the DNA and suggests that BvgA âˆ¼ P undergoes a conformational rearrangement that relocates the NTD to allow productive interaction of the CTD with the DNA.

2.
Structure ; 19(9): 1219-32, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21820315

ABSTRACT

CopA uses ATP to pump Cu(+) across cell membranes. X-ray crystallography has defined atomic structures of several related P-type ATPases. We have determined a structure of CopA at 10 Å resolution by cryo-electron microscopy of a new crystal form and used computational molecular docking to study the interactions between the N-terminal metal-binding domain (NMBD) and other elements of the molecule. We found that the shorter-chain lipids used to produce these crystals are associated with movements of the cytoplasmic domains, with a novel dimer interface and with disordering of the NMBD, thus offering evidence for the transience of its interaction with the other cytoplasmic domains. Docking identified a binding site that matched the location of the NMBD in our previous structure by cryo-electron microscopy, allowing a more detailed view of its binding configuration and further support for its role in autoinhibition.


Subject(s)
Archaeoglobus fulgidus/enzymology , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Adenosine Triphosphate/chemistry , Computer Simulation , Crystallization , Crystallography , Enzyme Assays , Hydrolysis , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...