Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(6): e99931, 2014.
Article in English | MEDLINE | ID: mdl-24949635

ABSTRACT

Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.


Subject(s)
Animal Shells/chemistry , Extracellular Matrix/drug effects , Pecten/chemistry , Tissue Extracts/pharmacology , Animals , Fibroblasts/drug effects , Humans , Primary Cell Culture , Skin/drug effects , Tissue Extracts/chemistry
2.
Exp Cell Res ; 320(2): 329-42, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24291221

ABSTRACT

Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers.


Subject(s)
Anoikis , Cell Cycle Checkpoints/physiology , Integrin alphaV/physiology , MAP Kinase Signaling System/physiology , Ovarian Neoplasms/pathology , Protein Kinase C/metabolism , Spheroids, Cellular/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Anoikis/genetics , Cell Survival/genetics , Enzyme Activation , Female , Humans , Middle Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Signal Transduction/genetics , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
3.
Biochim Biophys Acta ; 1830(10): 4885-97, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23811340

ABSTRACT

BACKGROUND: Intra-abdominal ascites is a complication of ovarian cancers and constitutes a permissive microenvironment for metastasis. Since fibronectin and vitronectin are key actors in ovarian cancer progression, we investigated their occurrence and molecular characteristics in various ascites fluids and the influence of these ascites-derived proteins on cell behavior. METHODS: Fibronectin and vitronectin were investigated by immunoblotting within various ascites fluids. A combined affinity-based protocol was developed to purify both proteins from the same sample. Each purified protein was characterized with regard to its molecular features (molecular mass of isoforms, tryptophan intramolecular environment, hydrodynamic radii), and its influence on cell adhesion. RESULTS: Fibronectin and vitronectin were found in all tested ascites. Several milligrams of purified proteins were obtained from ascites of varying initial volumes. Molecular mass isoforms and conformational lability of proteins differed according to the ascites of origin. When incorporated into the cancer cell environment, ascites-derived fibronectin and vitronectin supported cell adhesion and migration with various degrees of efficiency, and induced the recruitment of integrins into focal contacts. CONCLUSIONS: To our knowledge, this is the first combined purification of two extracellular matrix proteins from a single pathological sample containing a great variety of bioactive molecules. This study highlights that ascites-derived fibronectin and vitronectin exhibit different properties depending on the ascites. GENERAL SIGNIFICANCE: Investigating the relationships between the molecular properties of ascites components and ovarian cancer cell phenotype according to the ascites may be critical for a better understanding of the recurrence of this lethal disease and for further biomarker identification.


Subject(s)
Ascites/metabolism , Fibronectins/metabolism , Ovarian Neoplasms/metabolism , Vitronectin/metabolism , Female , Fibronectins/chemistry , Humans , Ovarian Neoplasms/pathology , Protein Conformation , Vitronectin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...