Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Adv Water Resour ; 94: 457-469, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28163355

ABSTRACT

Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

2.
Sci Total Environ ; 493: 1152-70, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24824138

ABSTRACT

Switzerland is one of the countries with some of the longest and best glaciological data sets. Its glaciers and their changes in response to climate have been extensively investigated, and the number and quality of related studies are notable. However, a comprehensive review of glacier changes and their impact on the hydrology of glacierised catchments for Switzerland is missing and we use the opportunity provided by the EU-FP7 ACQWA project to review the current state of knowledge about past changes and future projections. We examine the type of models that have been applied to infer glacier evolution and identify knowledge gaps that should be addressed in future research in addition to those indicated in previous publications. Common characteristics in long-term series of projected future glacier runoff are an initial peak followed by a decline, associated with shifts in seasonality, earlier melt onset and reduced summer runoff. However, the quantitative predictions are difficult to compare, as studies differ in terms of model structure, calibration strategies, input data, temporal and spatial resolution as well as future scenarios used for impact studies. We identify two sources of uncertainties among those emerging from recent research, and use simulations over four glaciers to: i) quantify the importance of the correct extrapolation of air temperature, and ii) point at the key role played by debris cover in modulating glacier response.

3.
Sci Total Environ ; 493: 1197-210, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24300481

ABSTRACT

Glaciers in the Andes of Chile seem to be shrinking and possibly loosing mass, but the number and types of studies conducted, constrained mainly by data availability, are not sufficient to provide a synopsis of glacier changes for the past or future or explain in an explicit way causes of the observed changes. In this paper, we provide a systematic review of changes in glaciers for the entire country, followed by a discussion of the studies that have provided evidence of such changes. We identify a missing type of work in distributed, physically-oriented modelling studies that are needed to bridge the gap between the numerous remote sensing studies and the specific, point scale works focused on process understanding. We use an advanced mass balance model applied to one of the best monitored glaciers in the region to investigate four main research issues that should be addressed in modelling studies for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance models) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and in high elevation areas and the large uncertainty in model outputs associated with it; 3) the role played by snow gravitational redistribution; and 4) the uncertainty associated with future climate scenarios. We quantify differences in model outputs associated with each of these choices, and conclude with suggestions for future work directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...