Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 172: 86-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26775207

ABSTRACT

A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.


Subject(s)
Cadmium/toxicity , Metals/toxicity , Oncorhynchus mykiss/physiology , Smell/drug effects , Animals , Binding, Competitive , Canada , Environmental Exposure , Inactivation, Metabolic/genetics , Metallothionein/genetics , Metallothionein/metabolism , Up-Regulation/drug effects , Water Pollutants, Chemical/toxicity
2.
Aquat Toxicol ; 159: 99-108, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25531432

ABSTRACT

Nanoparticles (NPs) are engineered in the nanoscale (<100 nm) to have unique physico-chemical properties from their bulk counterparts. Nanosilver particles (AgNPs) are the most prevalent NPs in consumer products due to their strong antimicrobial action. While AgNP toxicity at high concentrations has been thoroughly investigated, the sublethal effects at or below regulatory guidelines are relatively unknown. Amphibian metamorphosis is mediated by thyroid hormone (TH), and initial studies with bullfrogs (Rana catesbeiana) indicate that low concentrations of AgNPs disrupt TH-dependent responses in premetamorphic tadpole tailfin tissue. The present study examined the effects of low, non-lethal, environmentally-relevant AgNP concentrations (0.018, 0.18 or 1.8 µg/L Ag; ∼10 nm particle size) on naturally metamorphosing Xenopus laevis tadpoles in two-28 day chronic exposures beginning with either pre- or prometamorphic developmental stages. Asymmetric flow field flow fractionation with online inductively coupled plasma mass spectrometry and nanoparticle tracking analysis indicated a mixture of single AgNPs with homo-agglomerates in the exposure water with a significant portion (∼30-40%) found as dissolved Ag. Tadpoles bioaccumulated AgNPs and displayed transient alterations in snout/vent and hindlimb length with AgNP exposure. Using MAGEX microarray and quantitative real time polymerase chain reaction transcript analyses, AgNP-induced disruption of five TH-responsive targets was observed. The increased mRNA abundance of two peroxidase genes by AgNP exposure suggests the presence of reactive oxygen species even at low, environmentally-relevant concentrations. Furthermore, differential responsiveness to AgNPs was observed at each developmental stage. Therefore, low concentrations of AgNPs had developmental stage-specific endocrine disrupting effects during TH-dependent metamorphosis.


Subject(s)
Metamorphosis, Biological/drug effects , Nanoparticles/toxicity , Signal Transduction/drug effects , Silver/toxicity , Thyroid Hormones/metabolism , Xenopus laevis/physiology , Animals , Endocrine Disruptors/toxicity , Environmental Exposure , Larva/drug effects , Water Pollutants, Chemical/toxicity , Xenopus laevis/growth & development
3.
Front Genet ; 4: 251, 2013.
Article in English | MEDLINE | ID: mdl-24312126

ABSTRACT

Nanoparticles (NPs), materials that have one dimension less than 100 nm, are used in manufacturing, health, and food products, and consumer products including cosmetics, clothing, and household appliances. Their utility to industry is derived from their high surface-area-to-volume ratios and physico-chemical properties distinct from their bulk counterparts, but the near-certainty that NPs will be released into the environment raises the possibility that they could present health risks to humans and wildlife. The thyroid hormones (THs), thyroxine, and 3,3',5-triiodothyronine (T3), are involved in development and metabolism in vertebrates including humans and frogs. Many of the processes of anuran metamorphosis are analogous to human post-embryonic development and disruption of TH action can have drastic effects. These shared features make the metamorphosis of anurans an excellent model for screening for endocrine disrupting chemicals (EDCs). We used the cultured tailfin (C-fin) assay to examine the exposure effects of 0.1-10 nM (~8-800 ng/L) of three types of ~20 nm TiO2 NPs (P25, M212, M262) and micron-sized TiO2 (µ TiO2) ±10 nM T3. The actual Ti levels were 40.9-64.7% of the nominal value. Real-time quantitative polymerase chain reaction (QPCR) was used to measure the relative amounts of mRNA transcripts encoding TH-responsive THs receptors (thra and thrb) and Rana larval keratin type I (rlk1), as well as the cellular stress-responsive heat shock protein 30 kDa (hsp30), superoxide dismutase (sod), and catalase (cat). The levels of the TH-responsive transcripts were largely unaffected by any form of TiO2. Some significant effects on stress-related transcripts were observed upon exposure to micron-sized TiO2, P25, and M212 while no effect was observed with M262 exposure. Therefore, the risk of adversely affecting amphibian tissue by disrupting TH-signaling or inducing cellular stress is low for these compounds relative to other previously-tested NPs.

4.
Environ Health Perspect ; 118(4): 552-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20368127

ABSTRACT

BACKGROUND: There are conflicting reports regarding the effects of atrazine (ATZ) on amphibian development. Therefore, further studies are needed to examine the potential mechanisms of action of ATZ in amphibians. OBJECTIVES: Our aim in this study was to determine whether low concentrations of ATZ affect gonadal development and metamorphosis in the Northern leopard frog, Rana pipiens. METHODS: Tadpoles were exposed in outdoor mesocosms to nominal concentrations of 0.1 and 1.8 microg/L of formulated ATZ from Gosner stage 27 (G27) to metamorphic climax (G42). Exposure to 17alpha-ethinylestradiol (EE2; 1.5 microg/L) provided a positive control for induction of testicular oocytes in males. Endocrine-related gene expression and gonadal histopathology were examined at G42 and in a subset of premetamorphic G34 tadpoles that failed to metamorphose. RESULTS: Gonadal gross morphology revealed that the 1.8-microg/L ATZ treatment produced 20% more females compared with the control. Histologic analysis revealed that 22% of EE2-treated males had testicular oocytes, whereas none were observed in any animals from the control or either ATZ groups. ATZ increased brain estrogen receptor alpha mRNA to 2.5 times that of the control at premetamorphosis and altered liver levels of 5beta-reductase activity at metamorphosis. In contrast, brain aromatase mRNA level and activity did not change. ATZ treatments significantly reduced metamorphic success (number of animals reaching metamorphosis) without affecting body weight, snout-vent length, or age at metamorphosis. Gene expression analysis indicated that ATZ decreased the expression of deiodinase type 3 in the tail at premetamorphosis. CONCLUSIONS: Our study indicates that exposure to low concentrations of ATZ in experimental mesocosms alters gonadal differentiation and metamorphosis in developing R. pipiens.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Larva/physiology , Metamorphosis, Biological/drug effects , Rana pipiens/physiology , Sex Ratio , Animals , Female , Larva/drug effects , Male , Reverse Transcriptase Polymerase Chain Reaction
5.
Comp Biochem Physiol C Toxicol Pharmacol ; 149(4): 524-30, 2009 May.
Article in English | MEDLINE | ID: mdl-19101656

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a widely distributed industrial compound that has been detected in the eggs of various wild avian species. Laboratory studies have indicated that PFOS is embryotoxic to domestic chickens (Gallus gallus domesticus), but the mechanisms of toxicity in the developing avian embryo remain unknown. We recently demonstrated that PFOS acts as a peroxisome proliferator by causing increased expression of peroxisome proliferator activated receptor alpha (PPARalpha)-regulated genes in cultured primary chicken embryo hepatocytes. The present study examined whether PPARalpha-regulated genes were dose-dependently affected in chicken embryos exposed in ovo to PFOS. White leghorn chicken eggs were injected with 0.1, 5.0 or 100.0 microg PFOS/g egg into the air cell prior to incubation. Embryos were incubated until pipping, after which the expression of PPARalpha-regulated genes was measured in the liver tissue of surviving embryos using real-time reverse transcription polymerase chain reaction. A dose-dependent decrease in embryo pippability was observed with an LD50 of 93 microg/g (3.54 microg/g-672,910 microg/g, 95% confidence interval). Hepatic PFOS concentrations increased concomitantly with dose. The PPARalpha-regulated genes measured were peroxisomal acyl CoA oxidase, bifunctional enzyme, liver fatty acid binding protein and peroxisomal 3-ketoacyl thiolase. PFOS exposure via egg injection prior to incubation did not affect the transcriptional activity of any of the assayed PPARalpha-regulated genes at any of the doses examined in day 21 chicken embryos.


Subject(s)
Alkanesulfonic Acids/toxicity , Chick Embryo/drug effects , Fluorocarbons/toxicity , PPAR alpha/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Acetyl-CoA C-Acyltransferase/metabolism , Acyl-CoA Oxidase , Animals , Enoyl-CoA Hydratase/metabolism , Fatty Acid-Binding Proteins , Isomerases/metabolism , Multienzyme Complexes/metabolism , Oxidoreductases/metabolism , Peroxisomal Bifunctional Enzyme , Peroxisome Proliferators/toxicity , Peroxisomes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...