Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 23(5): 621-32, 2008 May.
Article in English | MEDLINE | ID: mdl-18086008

ABSTRACT

INTRODUCTION: B-cell leukemia/lymphoma 2 (Bcl2) is a proto-oncogene best known for its ability to suppress cell death. However, the role of Bcl2 in the skeletal system is unknown. Bcl2 has been hypothesized to play an important anti-apoptotic role in osteoblasts during anabolic actions of PTH. Although rational, this has not been validated in vivo; hence, the impact of Bcl2 in bone remains unknown. MATERIALS AND METHODS: The bone phenotype of Bcl2 homozygous mutant (Bcl2(-/-)) mice was analyzed with histomorphometry and muCT. Calvarial osteoblasts were isolated and evaluated for their cellular activity. Osteoclastogenesis was induced from bone marrow cells using RANKL and macrophage-colony stimulating factor (M-CSF), and their differentiation was analyzed. PTH(1-34) (50 microg/kg) or vehicle was administered daily to Bcl2(+/+) and Bcl2(-/-) mice (4 days old) for 9 days to clarify the influence of Bcl2 ablation on PTH anabolic actions. Western blotting and real-time PCR were performed to detect Bcl2 expression in calvarial osteoblasts in response to PTH ex vivo. RESULTS: There were reduced numbers of osteoclasts in Bcl2(-/-) mice, with a resultant increase in bone mass. Bcl2(-/-) bone marrow-derived osteoclasts ex vivo were significantly larger in size and short-lived compared with wildtype, suggesting a pro-apoptotic nature of Bcl2(-/-) osteoclasts. In contrast, osteoblasts were entirely normal in their proliferation, differentiation, and mineralization. Intermittent administration of PTH increased bone mass similarly in Bcl2(+/+) and Bcl2(-/-) mice. Finally, Western blotting and real-time PCR showed that Bcl2 levels were not induced in response to PTH in calvarial osteoblasts. CONCLUSIONS: Bcl2 is critical in osteoclasts but not osteoblasts. Osteoclast suppression is at least in part responsible for increased bone mass of Bcl2(-/-) mice, and Bcl2 is dispensable in PTH anabolic actions during bone growth.


Subject(s)
Genes, bcl-2 , Osteoclasts/cytology , Parathyroid Hormone/physiology , Animals , Base Sequence , Blotting, Western , DNA Primers , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Mice , Mice, Knockout , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...